Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Безвихревое движение. Движение шара

I] БЕЗВИХРЕВОЕ ДВИЖЕНИЕ. ДВИЖЕНИЕ ШАРА 361  [c.361]

Величина кМ называется присоединенной массой, а (M + kM )—виртуальной массой. При известном k движение тела может рассматриваться как бы без учета присутствия окружающей жидкости, но с массой, увеличенной на присоединенную, массу жидкости. Коэффициент присоединенной массы зависит от формы тела и характера движения тела в жидкости. В предположении о безвихревом (потенциальном) обтекании он может быть получен теоретическим путем. При этом оказывается, что для цилиндра, ориентированного своей образующей перпендикулярно направлению движения, ft=l,0, для шара А = 0,5, а для эллипсоида вращения, большая ось которого параллельна направлению движения и вдвое превышает малую ось, fe = 0,20. Экспериментальные данные для тел, совершающих гармонические колебания в реальных жидкостях, дают хорошее совпадение с результатами расчета на основе теории потенциального движения (Л. 2].  [c.397]


В реальной вязкой жидкости парадокс Даламбера не имеет места. Для случая очень малых рейнольдсовых чисел в этом можно было убедиться на примере задачи Стокса об обтекании шара. Для течений с большими рейнольдсовыми числами, при наличии пограничного слоя, вопрос становится менее ясным. Основное свойство пограничного слоя передавать без искажений на стенку крыла давления внешнего, безвихревого потока может навести на мысль, что парадокс Даламбера для движений с пограничным слоем сохраняет свою силу. Если бы распределение давлений во внешнем потоке в точности совпадало с тем, которое получается при безотрывном безвихревом обтекании крыла идеальной жидкостью, то сопротивление давлений, действительно, равнялось бы нулю. Однако на самом деле наблюдается следующее явление. Линии тока, вследствие подтормаживающего влияния стенки, оттесняются от поверхности крыла. Такое искажение картины течения приводит к нарушению идеального распределения давлений по поверхности крыла.  [c.639]

ИЗ нее видно, что распределение давления относительно экваториальной ПЛОСКОСТИ 9 = тс/2, перпендикулярной к направлению потока на бесконечности, симметрично. А тогда ясно, что давления, приложенные к поверхности шара, взаимно уравновешиваются. Таким образом шар при равномерном поступательном движении не испытывает никакого сопротивления со стороны жидкости. Этот результат, резко противоречащий данным опыта, носит название парадокса Эйлера — Даламбера. Он объясняется тем, что в действительности безотрывное безвихревое обтекание шара не имеет места, с поверхности шара срываются вихри, которые видоизменяют как картину течения, так и распределение давления по поверхности шара.  [c.362]

Безвихревое движеиие. Движение шара. Перейдем теперь к рассмотрению пространственных течений идеальной несжимаемой жидкости. Считая движение безвихревым, вводим потенциал скорости (х, у, г, (), так что проекции скорости будут  [c.359]

Таким образом, всякая задача безвихревого движения в криволинейном слое (постоянной толщины) преобразуется с помощью конформного отображения в соответствующую плоскую задачу. Для сферической поверхности мы можем, например, наряду с бесчисленным множеством других методов, применить метод стереографической проекции. В качестве простого примера возьмем, например, случай, когда слой постоянной толщины покрывает всю поверхность шара за исключением двух круговых островов (величина и взаимное положение которых могут быть произвольные). Очевидно, единственное (плоское) безвихревое движение, которое возможно в наполненном жидкостью двусвязном пространстве, это такое, при котором жидкость циркулирует вокруг обоих островов в протибоположных направлениях, причем циклические постоянные для обеих циркуляций должны быть одинаковыми. Так как окружности при проектировании переходят в окружности, то соответствующая плоская задача есть та самая, которая решена в 64, п. 2,  [c.135]


Пример 8. Через тонкую трубку с открытым концом, погруженную в большой резервуар, вода удаляется с расходом 4я кубических футов в 1 сек. Принимая безвихревое движение и используя теорему Легалли, установить усилие на шар диаметром 1 фут, который прикреплен так, что его центр находится в 3 футах от конца трубки. Сравнить результаты с точными величинами, полученными из следующей формулы  [c.96]


Смотреть страницы где упоминается термин Безвихревое движение. Движение шара : [c.57]    [c.25]   
Смотреть главы в:

Теоретическая гидромеханика Часть1 Изд6  -> Безвихревое движение. Движение шара



ПОИСК



Движение безвихревое

Ок шара

Шаров



© 2025 Mash-xxl.info Реклама на сайте