Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О принципах несвободных динамических систем

Принцип освобождаемости от связей Н. Г. Четаев обобщил на системы, в которых кроме чисто механической части содержатся переменные параметры, описываемые обыкновенными дифференциальными уравнениями первого порядка [129]. По современной терминологии такие системы называют динамическими. Если существуют ограничения на движение, то мы имеем несвободную динамическую систему. В отличие от связей, создающих реакции только на материальные точки механической системы, в уравнения для параметров несвободной динамической системы также включаются слагаемые, названные Четаевым принуждениями реакций. Связи являются условиями, налагаемыми на состояние материальных точек системы и на значения параметров в каждый момент времени.  [c.94]


Полагая, что общее уравнение (10) при условиях (5) и (6) имеет единственное решение, сформулируем результат как принцип наименьшего отклонения в любой момент времени из всех мыслимых движений истинное движение несвободной динамической системы с идеальными удерживающими связями имеет наименьшее отклонение от движения системы, полученной освобождением от всех связей.  [c.98]

Принцип Даламбера дает общий метод составления уравнений движения любой несвободной механической системы, причем эти уравнения имеют ту же форму, что и уравнения статики. Этот метод оказывается особенно полезным при решении тех задач динамики, где требуется найти динамические реакции связей, т. е. реакции, возникающие при движении системы. При этом, если пользоваться уравнениями (7), то из рассмотрения будут исключены все наперед неизвестные внутренние силы. В случаях, когда требуется определить реакции внутренних связей, необходимо данную механическую систему расчленить на части так, чтобы по отношению к этим частям искомые силы стали внешними. С помощью принципа Даламбера решаются также многие задачи, в которых требуется определить ускорения тел, входящих в состав данной механической системы.  [c.727]

Обобщение принципа наименьшего отклонения для несвободных динамических систем с идеальными связями можно получить в тех же направлениях, что для принципа Гаусса [13] при сравнения истинного движения с движениями системы, полученной освобождением от части связей, при наличии неудерживающих связей и т. д.  [c.98]

Принцип освобождаемости от связей для несвободных динамических систем получается как естественное обобщение приёма, применённого Н.Г. Четаевым в работе [129], а свойство идеальности связей формулируется как результат расширенного применения гипотезы Гаусса о мыслимых движениях механической системы (см. [88]).  [c.99]

Уравнения эти показывают, что с динамической точки зрения несвободную систему можно рассматривать как свободную, движущуюся под действием задаваемых сил и реакций связей. Использование этого положения, именуемого принципом освобождаемости, оказывает большие услуги при изучении равновесия и движения несвободной системы. Напомним, что в статике твердого тела мы уже пользовались этим принципом, заменяя опоры пх реакциями и составляя уравнения равновесия твердого тела под действием задаваемых сил и опорных реакций так, как будто тело свободно. В предыдущих главах настоящего тома мы также часто имели дело с реакциями опор, но, не фиксируя на этом особого внимания, рассматривали реакции как любые другие приложенные силы.  [c.314]



Смотреть страницы где упоминается термин О принципах несвободных динамических систем : [c.483]   
Смотреть главы в:

Метод переменного действия Изд2  -> О принципах несвободных динамических систем



ПОИСК



Динамический принцип

Система несвободная

Системы динамические



© 2025 Mash-xxl.info Реклама на сайте