Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проникающие и краевое решения

К настоящему времени в СССР и за рубежом усилиями многих ученых осуществлены важные исследования явлений хрупкого разрушения твердых тел как в плане решения соответствующих краевых задач механики и создания физически более обоснованных критериев разрушения, так и в области разработок методов оценки склонности конструкционных материалов к хрупкому разрушению (см., например, обзоры в работах [9, 82, 118, 145]). Необходимость в таки исследованиях обуслоЬ-лепа, с одной стороны, тем, что высокопрочные конструкционные материалы (например, жаропрочные сплавы, упрочненные стали, металлокерамические материалы, некоторые пластмассы), как правило, являются хрупкими материалами, т. е. такими, которые уже при нормальных температурах и малых скоростях нагружения разрушаются путем распространения трещины без предварительных пластических деформаций макрообъемов тела. (При низких температурах, повышенных скоростях нагружения, воздействии некоторых поверхностно-активных сред, наводороживании и в других условиях, приводящих к ограничению пластического течения конструкционного материала, его разрушение путем распространения трещины доминирует). С другой стороны, реальные условия эксплуатации конструкции всегда предусматривают наличие некоторой жидкой или газовой среды. Эта среда проникает в деформируемое тело (элемент конструкции) через его структурные несовершенства — дефекты (макро- или микротрещины, границы зерен, включений) и особенно интенсивно взаимодействует с участками тела, деформированными за предел упругости. К таким участкам относятся окрестности резких концентраторов напряжений (трещины, остроконечные полости или жесткие включения и др.). Именно в окрестности подобных дефектов среда, изменяя физико-механические свойства деформируемого материала, в первую очередь его сопротивление зарождению и развитию трещины, оказывает существенное влияние на служебные свойства (несущую способность) рабочего тела в целом.  [c.9]


Решение задачи о распространении тепла от мгаовенного источника энергии о для случая плоской симметрии рассматривалось в работе [45]. В этой же работе было впервые отмечено существование температурных волн конечной скорости (см. также [46]). В работах [7, 49, 64, 81] для уравнений параболического типа были доказаны теоремы существования и единственности задачи Коши и краевых задач, а также теоремы сравнения, которые с помощью автомодельных решений позволили получить достаточно общие условия конечной скорости распространения температурных волн. В работе [74] был построен пример так называемой остановившейся температурной волны, обладающей тем свойством, что тепло не проникает с течением времени в холодную среду, несмотря на неограниченный рост температуры, заданной на границе. В дальнейшем явление локализации тепла было подробно исследовано во многих работах (см., например, [40, 43, 47, 55, 69—71] и библиографию в [55, 70]). Было показано, что причиной локализации может быть так называемый граничный режим с обострением, при котором функция, заданная на границе, обращается в бесконечность в конечный момент времени. Причиной может быть также энерговыделение в режиме с обострением в среде с нелинейными объемными источниками.  [c.47]


Смотреть страницы где упоминается термин Проникающие и краевое решения : [c.98]   
Смотреть главы в:

Контактные задачи теории ползучести  -> Проникающие и краевое решения



ПОИСК



I краевые

Краевой решение

Плоская задача проникающее и краевое решения

Проников



© 2025 Mash-xxl.info Реклама на сайте