Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плоская задача проникающее и краевое решения

Решение задачи о распространении тепла от мгаовенного источника энергии о для случая плоской симметрии рассматривалось в работе [45]. В этой же работе было впервые отмечено существование температурных волн конечной скорости (см. также [46]). В работах [7, 49, 64, 81] для уравнений параболического типа были доказаны теоремы существования и единственности задачи Коши и краевых задач, а также теоремы сравнения, которые с помощью автомодельных решений позволили получить достаточно общие условия конечной скорости распространения температурных волн. В работе [74] был построен пример так называемой остановившейся температурной волны, обладающей тем свойством, что тепло не проникает с течением времени в холодную среду, несмотря на неограниченный рост температуры, заданной на границе. В дальнейшем явление локализации тепла было подробно исследовано во многих работах (см., например, [40, 43, 47, 55, 69—71] и библиографию в [55, 70]). Было показано, что причиной локализации может быть так называемый граничный режим с обострением, при котором функция, заданная на границе, обращается в бесконечность в конечный момент времени. Причиной может быть также энерговыделение в режиме с обострением в среде с нелинейными объемными источниками.  [c.47]



Смотреть главы в:

Контактные задачи теории ползучести  -> Плоская задача проникающее и краевое решения



ПОИСК



I краевые

Задача краевая

Задачи краевые - Решении

Краевой решение

М тох решения плоской задачи

Плоская задача

Проникающие и краевое решения

Проников

Решения плоские



© 2025 Mash-xxl.info Реклама на сайте