Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложение сферических функций Общее уравнение

Приложение сферических функций. Общее уравнение 629  [c.628]

Введенке. В этой главе мы рассмотрим решения уравнений равновесия изотропного упругого телд при ПОМОЩИ разложений в ряды гармонических функций и главным образом в ряды сферических функций. Мы начнем с некоторых специальных типов решений, полученных при помощи сферических функций и дающих важные, результаты, касающиеся равновесия шара, которые являются началом приложений теории упругости к геофизике. Мы будем следовать Кельвину, который выразил общее решение задачи 1) о шаре при помощи сферических функций, рассматривая их как функции декартовых координат и избегая преобразования к полярным координатам. После этого мы дадим некоторые применения рядов гармонических функций, отличных от сферических функций, для интегрирования уравнений равновесия.  [c.261]


Для приложений более интересны решения уравнения (4,4), убывающие или переходящие в однородное поле на бесконечности. При условии а = onst и в предположении цилиндрической симметрии задачи частное решение уравнений (4,2), (4,4) найдено в работе Этому решению соответствует поле, распадающееся на отдельные шаровые слои, внутри каждого из которых силовые линии замкнуты. На границе слоя возможно сшивание решений с различными а, а также с решением, переходящим на бесконечности в однородное поле. При тех же предположениях в работе получено в явном виде общее решение уравнений (4,2), (4,4), выраженное через цилиндрические функции от г и полиномы Гегенбауэра от OS в сферических координатах г, , ср. В обеих этих работах используется метод разложения цилиндрически симметричного поля на поло-идальную и тороидальную части, для первой из которых вектор напряженности магнитного поля И лежит в плоскости, проходящей через ось симметрии, для второй — перпендикулярен ей. Каждая из этих частей полностью определяется одной скалярной функцией от цилиндрических координат р и Z. С помощью указанного разложения в работе получено общее соотношение между определяющими скалярами цилиндрически симметричного магнитного поля, удовлетворяющего уравнению (4,1) с учетом сил гравитации.  [c.23]


Смотреть главы в:

Гидродинамика  -> Приложение сферических функций Общее уравнение



ПОИСК



Общие уравнения

Уравнения для функции

Функции сферические



© 2025 Mash-xxl.info Реклама на сайте