Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы решений уравнений теплопроводности и термоупругости кусочно-однородных тел

Методы решений уравнений теплопроводности и термоупругости кусочно-однородных тел  [c.86]

Наконец, представлены методы решения полученных уравнений теплопроводности и термоупругости кусочно-однородных тел.  [c.46]

Одним из эффективных методов составления исходных дифференциальных уравнений и решения соответствующих краевых задач теплопроводности и термоупругости для кусочно-однородных тел (многослойных, армированных, со сквозными и с несквозными включениями) в случае выполнения на поверхностях сопряжения их однородных элементов условий идеального термомеханического контакта, для многоступенчатых тонкостенных элементов, локально нагреваемых путем конвективного теплообмена тел, тел е зависящими от температуры свойствами, с непрерывной неоднородностью является метод [52], основанный на применении обобщенных функций [7, 18,22, 50,87] и позволяющий получать единые решения для всей области их определения. В этих случаях физико-механические характеристики и их комбинации кусочно-однородных тел, толщина (диаметр) многоступенчатых оболочек, пластин, стержней, коэффициент теплоотдачи с поверхности тела могут быть описаны для всего тела (поверхности) как единого целого с помощью единичных, характеристических функций, а физико-механические характеристики тел с непрерывной неоднородностью с зависящими от температуры физико-механическими характеристиками могут быть аппроксимированы с помощью единичных функций. В результате подстановки представленных таким образом характеристик в дифференциальные уравнения второго порядка теплопроводности и термоупругости неоднородных тел, дифференциальные уравнения оболочек, пластин, стержней переменной толщины (диаметра), дифференциальные уравнения теплопроводности или условие теплообмена третьего рода с переменными коэффициентами теплоотдачи приходим к дифференциальным уравнениям или граничным условиям, содержащим коэффициентами ступенчатые функции, дельта-функцию Дирака и ее производную [52]. При получении дифференциальных ура,внений термоупругости для тел одномерной кусочно-однородной структуры наряду с вышеописанным методом эффективным является метод [67, 128], основанный на постановке обобщенной задачи сопряжения для соответствующих дифференциальных уравнений с постоянными коэффициентами. Здесь за исход-  [c.7]


ВИЯМИ. Основы теории многослойных конструкций содержатся в работах В. В. Болотина и Ю. Н. Новичкова [12], С. А. Амбарцумяна [6], Л. П. Хорошуна [150] и других. Многие (например, [3— 5, 11, 15, 40, 120, 141—155, 191]) исследования в области теплопроводности и термоупругости составных и многослойных тел выполнены методом сопряжения. При этом записываются уравнения для каждого элемента кусочно-однородного тела, и удовлетворяются условия идеального термомеханического контакта между ними. Однако решение многих практически важных задач (например, для тел с несквозНыми включениями) таким методом часто затруднительно, что приводит к необходимости разработки новых методов решения задач теплопроводности и термоупругости к усочно-однородных тел.  [c.7]

В настоящей главе изучаются квазистатические температурные напряжения в кусочно-однородных телах. Здесь рассматривается квазистатическая задача термоупругости для составной полосы-пластинки, нагреваемой путем конвективного теплообмена с внешней средой, температура которой является функцией времени, С использованием интегрального преобразования Лапласа нестационарная задача теплопроводности для рассматриваемой системы приведена к решению обыкновенного частично вырожденного дифференциального уравнения с кусочно-постоянными коэффициентами, построенного методом И. Ф Образцова— -Г Г. Онанова [117]. Затем в замкнутом виде находятся выражения соответствующих найденному температурному полю температурных напряжений, исследуется влияние теплоотдачи, способов закрепления краев на характер распределения температурных напряжений в стеклянной полосе-пластинке с подкрепленным коваровым стержнем краем.  [c.259]


Смотреть главы в:

Термоупругость тел неоднородной структуры  -> Методы решений уравнений теплопроводности и термоупругости кусочно-однородных тел



ПОИСК



МЕТОД Теплопроводность

Метод решения уравнений

Однородность тел

Однородные уравнения

Решение однородного уравнения

Решения метод

Решения однородные

Термоупругие уравнения

Термоупругости уравнения

Термоупругость

Уравнение метода сил

Уравнение теплопроводности



© 2021 Mash-xxl.info Реклама на сайте