Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическое уравнение Левинсона

Кинетическое уравнение Левинсона. Мы начнем с простейшего квантового кинетического уравнения, включающего эффекты памяти. В литературе оно часто называется уравнением Левинсона [40]. Различные модификации этого уравнения используются, например, для описания переходных процессов в полупроводниках, вызванных короткими лазерными импульсами [94].  [c.309]

Кинетическое уравнение Левинсона выводится из квантового уравнения Лиувилля при следующих предположениях  [c.309]


О То, ЧТО из кинетического уравнения Левинсона следует сохранение полной энергии системы, было впервые доказано в работе [126].  [c.312]

Как уже отмечалось, интерес к немарковским кинетическим уравнениям возник в связи с началом активного исследования быстрых процессов в веществе иод действием мощного лазерного излучения. Тот факт, что уравнение Левинсона не нарушает закон сохранения полной энергии, явился приятной неожиданностью . Казалось, что включение эффектов памяти ведет лишь к техническим сложностям в решении кинетических уравнений и не создает каких-либо принципиальных проблем. Очень скоро, однако, численное решение кинетических уравнений типа уравнения Левинсона показало, что все они обладают серьезными дефектами [94]. Во-первых, в процессе решения возникали нефизические отрицательные значения одночастичной функции распределения. Оказалось также, что уравнение Левинсона не описывает релаксацию системы к равновесию после окончания действия внешнего поля и, вообще, в пределе больших времен его решение не стремится к какой-либо стационарной функции распределения. Формальные причины такого поведения решений уравнения Левинсона легко обнаружить. В отличие от интеграла столкновений Улинга-Уленбека (4.1.86), интеграл столкновений Левинсона (4.5.14) не обращается в нуль если в него подставить равновесные распределения Ферми или Бозе ). Иначе говоря, уравнение Левинсона не имеет равновесного решения Поэтому нет ничего удивительного в том, что уравнение Левинсона предсказывает нефизическое поведение системы на стадии релаксации после окончания действия поля. Впрочем, поскольку это кинетическое уравнение имеет внутренние дефекты, возникают сомнения и в его применимости к описанию стадии возбуждения системы полем.  [c.313]

Остановимся кратко на некоторых попытках улучшить уравнение Левинсона. На первый взгляд источником проблем является незатухающая память в интеграле столкновений (4.5.14), благодаря которой скорость изменения одночастичной функции распределения в момент времени t зависит от всей предыстории процесса. Поскольку квазичастицы в реальных системах имеют характерное время жизни г ,, ядро в немарковском интеграле столкновений должно затухать за время t — t т . Качественно этот эффект можно учесть, вводя обрезающий множитель ехр — t — t )/т в интеграл столкновений Левинсона [94]. В численных расчетах было обнаружено, что решения улучшенного уравнения Левинсона ведут себя на больших временах более устойчиво (в частности, исчезают отрицательные значения /) и наблюдается переход к марковскому режиму, но, тем не менее, при t оо функция распределения не стремится к равновесной. Дело в том, что введение квазичастичного затухания в интеграл столкновений Левинсона нарушает закон сохранения энергии ). Поэтому с течением времени растут числа заполнения возбужденных состояний, т. е. происходит нефизический перегрев системы. Хаг и Баньян [93] предложили феноменологическое ядро в интеграле столкновений Левинсона для электрон-фононной системы, которое приводит к более разумному поведению функции распределения электронов в марковском пределе. Стационарное решение кинетического уравнения оказалось близким к распределению Ферми, однако точного равенства этих функций достигнуто не было. Впрочем, подбор модельных выражений для ядер в интеграле столкновений Левинсона нельзя рассматривать всерьез как преодоление трудностей немарковской кинетики. Можно показать, что любое улучшение уравнения Левинсона в этом направлении ведет к нарушению закона сохранения энергии, причем стационарное решение не совпадает  [c.313]



Смотреть страницы где упоминается термин Кинетическое уравнение Левинсона : [c.312]    [c.321]   
Смотреть главы в:

Статистическая механика неравновесных процессов Т.1  -> Кинетическое уравнение Левинсона



ПОИСК



Кинетические уравнения

Левинсон



© 2025 Mash-xxl.info Реклама на сайте