Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Таллий - цирконий

Титан. Для защиты титана и сплавов на его основе разработаны коррозионностойкие стеклоэмали, характеризующиеся высоким суммарным содержанием кремнезема и других химически устойчивых окислов, — двуокиси циркония, окиси алюминия, двуокиси титана, окиси хрома и др., и низким содержанием окислов щелочных металл од. Стеклоэмали наплавляются на титан в атмосфере воздуха. Эмали испытывались в расплавах галоидных солей таллия при 550° С, в парах тетрахлорида титана при 950° С, в кипящих минеральных кислотах, а также в качестве электроизоляционных покрытий, работающих в морской воде при высоком давлении. Испытания показали, что эмали для титана обладают несравненно более высокой химической стойкостью, чем эмали, предназначенные для стальной химической аппаратуры.  [c.6]


Сера S (г). ... Сера Sj (г). . . . Сурьма Sb (т). . Селен Se (т). . . Селен Se (г). . . Селен Se2 (г). . . Кремний Si (т). . Олово Sn (т), белое Олово Sn (т), серое Стронций Sr (т) Теллур Те (т). Торий Th (т). . Титан Ti (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам W (т) Цинк Zn (т). . Цирконий Zr (т)  [c.191]

Двуокись циркония Двуокись тория Кремнезем Окислы редкоземельных ме таллов Металлы  [c.605]

Селен Бег (г). Кремний 81 (т) Олово 8п (т), белое Олово 8п (т), серое Стронций 8г (т) Теллур Те (т). Торий ТН (т). . Титан Т1 (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам АУ (т) Цинк 2п (т). . Цирконий 2г (т)  [c.191]

Под руководством акад. В. И. Вернадского в 1909—1915 гг. были проведены важные исследования по изучению распространенности в недрах нашей страны рассеянных редких металлов —индия, таллия, рубидия и цезия, что было ценным вкладом в геохимию этих элементов. В 1916 г. В. И. Вернадский указывал, что в России имеется сырье для получения ванадия, лития, лантана, церия, тория, бора, висмута, кадмия, молибдена, титана, олова, радия, селена, урана, цезия и циркония. Но ни один из этих металлов не добывался в России.  [c.23]

Лидером производства и продажи машиностроительной керамики является Япония [3], которая поставляет на мировой рынок 25-30 % керамических изделий для машиностроения, в том числе 48-50 % деталей изготовляется для керамических двигателей и около 20 % — для режущего керамического инструмента (керамические резцы, фрезы и др.). Видное место среди керамических изделий, применяемых в машиностроении, занимают оксиды алюминия, циркония, карбиды титана и кремния, нитриды алюминия, бора и кремния, используемые главным образом при изготовлении режущего инструмента для механической обработки различных металлов, сплавов и неметаллических материалов (стекла, си-талла, гранита и др.) и в качестве износостойких и термостойких элементов в газовых турбинах, автомобильных двигателях и т. п.  [c.749]

Кристаллические вещества способны существовать в нескольких различных кристаллических формах. Эти кристаллические формы называются модификациями, а само явление — полиморфизмом. Например, алмаз и графит являются различными кристаллическими формами углерода, а кварц, тридимит и кристобалит — различные формы кремнезема. Ряд металлов, в том числе железо, кобальт, титан, марганец, олово, таллий, цирконий могут существовать в нескольких кристаллических модификациях.  [c.68]

Процесс горения, следующий за воспламенением, может происходить либо на поверхности расплавленного окисного слоя, покрывающего металл, либо в окружающей паровой фазе. Важную роль играют гетерогенные реакции на поверхности растущих взвешенных окисных частиц. Горение на поверхности имеет место в том случае, если окисел более летуч, чем металл. Горение в парс -вой фазе происходит в обратном случае и может к тому же подав-.ляться образованием защитного окисного слоя или понижение.м тедшературы пламени в результате потерь тепла ниже точки кипения металла. Эксперименты с расплавленным алюминием проводились в работах [290, 289] горение магниевой ленты изучалось Коффином [123] проволок из титана, циркония, алюминия и магния — Гаррисоном и Иолтом [317, 318] стержней из бора — Талли [771]. Преобладающая часть исследований горения мета.т-лов выполнена с металлическими порошками [124 135, 162, 170, 683, 888].  [c.114]


Оловянная чума — яркий пример полиморфного превращения. Но он во многом нестандартен. И белое, и серое олово имеют необычные для металлов сложные решетки, сам переход происходит при достаточно низких температурах и сопровождается сильным изменением объема. Классическими для металлов являются превращения при нагревании плотио-упакованных структур ГЦК и ГПУ в более рыхлую ОЦК структуру. Они происходят в кальции, стронции, титане, цирконии, гафнии, таллии и некоторых других металлах. Была даже высказана гипотеза, что и наоборот, элементы, которые известны только в ОЦК модификации, должны при низких температурах переходить в плотноупакованные структуры. И действительно в классических ОЦК металлах — литии и натрии— такое явление было обнаружено экспериментально.  [c.134]

В работе Уманского [140] эти представления распространены на весь класс фаз внедрения. Имеет место аддитивность кристаллической структуры и физических свойств. Все металлы, образующие класс соединений, являются переходными, а неме таллы обладают близкими значениями потенциала ионизации 21,7-10 ( йс (13,54 эб) для водорода, 23-lQ- дж (14,47 эв) для азота, 18-10 дж (11,24 эв) для углерода. Тепловой эффект — экзотермический, причем он тем больше, чем менее заполнена с -подгруппа металлического атома. У карбидов и нитридов циркония и титана — элементов IV группы — эффект больше, чем у карбидов и нитридов тантала н ванадия — элементов V группы. Реакция образования карбидов молибдена и вольфрама МогС и W является эндотермической. При пропускании тока через-стальную проволоку при 1070 С скорость диффузии углерода в направлении тока (от анода к катоду) больше, что указывает на положительную ионизацию атомов углерода, подобно атому водорода в PdH.  [c.168]

Добавка к хромато-фосфатному ингибитору солей кобальта, церия, хрома, марганца, кадмия, цинка и никеля оказывает положительное влияние на поведение стали. Соли же урана, кремния, таллия, циркония, железа, меди, сурьмы, бериллия и алюминия, наоборот, снижают эффективность ингибиторов. С экономической точки зрения наиболее приемлема добавка цинка. Оптимальные составы получаются при введении цинка в количестве от 1 до 2 мг/кг на 25 мг/кг полифосфата.  [c.150]

В отношении многих металлов часто применяют термин редкие (в смысле малоприменяемые). Однако редкость их может вызываться целым рядом причин малой распространенностью в земной коре рассеянностью их присутствия в рудах и минералах при значительном в целом содержании в земле трудностью их выделения из руды или отделения от других металлов еще недостаточной изученностью свойств, ограничивающей применение. К числу таких редких металлов принадлежат литий, рубидий, цезий, бериллий, галлий, индий, таллий, германий. Из элементов побочных подгрупп к редким принадлежат скандий, иттрий, лантан, актиний, цирконий, гафний, ванадий, ниобий, рений. К числу редких, а точнее рассеянных, принадлежат и лантаноиды (церий и др.), на что указывает их старинное название редкоземельные элементы ( земля — старинное название оксидов).  [c.75]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

Врегманом и Ньюменом [129, 130] было проведено исследование влияния добавок цинка и других катионов к комбинации, состоящей из полифосфата и ферроцианида. Они нашли, что добавки катионов кобальта, церия, хрома, марганца, кадмия, цинка и никеля оказывают положительное влияние. Катионы же урана, кремния, таллия, циркония, железа, меди, сурьмы, бериллия и алюминия, наоборот, снижают эффективность ингибиторов. С точки зрения стоимости и растворимости добавка цинка является практически наиболее приемлемой для использования в смешанных ингибиторах, применяемых в системах башенного охлаждения. Оптимальные составы получаются при введении цинка в количестве от 1 до 2 мг л на 25 мг л полифосфата. Берд [124] указывает на эффективность комбинированного состава из полифосфата и цинка. По сообщению Такеуши [98], как 2п, так и N1 улучшают ингибирующее действие гексаметафосфата. Оптимальное весовое отношение этих катионов к аниону метафосфата равнялось, соответственно, 25 и 60 к 100. Рама Чар [131] сообщает, что в комбинации с ппрофосфатнымн ингибиторами эффективными являются 8п, Еп, N1, Си и РЬ.  [c.120]


Литий, натрий, калий, рубидий, цезий, у-кальций, У-стропций, барий, р-таллий, р-титан, Р-цирконий, Р-гафний, ванадий, ниобий, тантал, хром, молибден, вольфрам, а, р-же-лезо, европий, У-уран, У-нептуний, е-плутоний  [c.412]

Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]

Бериллий, магний, кальций, барий, бор, алюминий, кремний, цирконий, хром, марганец, железо, кобальт, медь, серебро, ртуть, таллий, свинец, торий, кадмий (10- —10- ) Отгонка ванадия в виде тетрахлорида и триоксихло-рида Спектральный 41  [c.14]

Селен Титан, ванадий, марганец, никель, медь, цинк, алюминий, олово, иттрий, цирконий, молиб- ден, железо, палладий, серебро, кадмий, скандий, лантан, гафний, торий, уран, кобальт, платина, серебро, золото, ртуть, галлий, индий, таллий, сурьма, свинец, висмут (10 5) Экстракция примесей в виде оксихинолинатов и дитизонатов То же 45  [c.15]

К мартенситным фазам относят не только метастабильные фазы (пересыщенные твердые растворы) типа мартенсита в сталях, а - и ы-фаз в сплавах титана с наличием эвтектоидного превращения (с железом, марганцем, хромом и т. д.) и а -, а - и ы-фаз п сплавах титана типа ограниченных твердых растворов (с молибденом, ванадием и т. д.), но также и стабильные мартенситоподобные фазы в сплавах типа неограниченных твердых растворов (сплавы железа с никелем, марганцем, хромом, сплавы титана с цирконием), а также в чистых металлах (титан, цирконий, олово, кобальт, таллий и т. д.) [1, 2].  [c.19]


Смотреть страницы где упоминается термин Таллий - цирконий : [c.43]    [c.396]    [c.409]    [c.290]    [c.4]    [c.68]    [c.2]    [c.296]    [c.43]    [c.893]    [c.895]    [c.61]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Таллий - цирконий



ПОИСК



ТАЛЛИ

Таллий

Циркон

Цирконий



© 2025 Mash-xxl.info Реклама на сайте