Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рутений-ванадий

ЯТП (0,650 мкм) ванадия ЯТП (0,653 мкм) ванадия >1< ТЗ платины ТП циркония ТЗ родня ЯТП (0,650 мкм) рутения  [c.176]

Палладий Ванадий Рутений Марганец Хром. Медь Железо Кобальт Никель Г рафит Бериллий Вор. Алма.з  [c.607]

Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий).  [c.39]


Вольфрам хорошо растворим в алюминии, титане, ванадии, цирконии, платине, осмии, родии и рутении, но почти не растворяется в ртути. Имеют-сй сообщения о соединениях вольфрама с бериллием и теллуром. Вольфрам слабо растворим в тории и уране. Он не образует сплавов с кальцием, медью, магнием, марганцем, свинцом, цинком, серебром и оловом.  [c.152]

Рг = 1,0 г/см — — углеродное зеркало переменной плотности (р1 = == 2,2 г/см рг = 1,0 г/см ) I — сильно-поглощающий компонент — рутений ц ванадий  [c.103]

Металлические связи, появляющиеся между ближайшими соседями вдоль направлений (111) вследствие перекрывания (е5)-орбиталей и концентрации d-электронов между ядрами, упрочняют и стабилизируют ОЦК структуру от металлов группы скандия (III гр.) и титана (IV гр.) к металлам VI группы (хром, молибден, вольфрам). Близость электронного строения, определяющая идентичность ОЦК структур, способствуют образованию широких или непрерывных областей ОЦК твердых растворов между тугоплавкими металлами IV—VI групп и создают широкие возможности твердорастворного упрочнения путем взаимного легирования этих металлов. Наряду с повышением высокотемпературной прочности такое легирование в ряде случаев позволяет значительно повысить жаростойкость при газовой коррозии в агрессивных средах. Введение в тугоплавкие ОЦК металлы до 25—30% рения, а также рутения или осмия, которые вследствие неполной ионизации имеют плотную гексагональную структуру, но при растворении в ОЦК металлах передают в коллективизированное состояние все валентные электроны, приводит к сильному повышению пластичности ванадия,, хрома, молибдена и вольфрама ( рениевый эффект ). Такое повышение пластичности хрупких металлов интересно с точки зрения теории легирования и нашло определенное практическое применение  [c.39]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

ПАССИВИРОВАНИЕ электрохимическое, процесс, в результате которого металл делается неспособным к своим обычным реакциям и уподобляется благородным металлам. Напр, железо, будучи обработано конц. азотной кислотой, теряет способность растворяться в кислотах, выделять медь из раствора медного купороса, растворяться на аноде при электролизе и т. д. Способностью пассивироваться кроме железа обладают в большей или меньшей степени никель, кобальт, хром, свинец, марганец, алюминий, олово, ванадий, ниобий, молибден, вольфрам, рутений, золото. П. металла часто наблюдается при электролизе напр, если анодно поляризовать железо в разведенной серной к-те, то при небольших плотностях тока оно ведет себя нормально и переходит в раствор, давая сернокислое железо если же путем повышения подводимого напряжения увеличивать плотность тока, то при достижении известной величины плотности тока, зависящей от природы раствора, в к-рый погружено железо, сила тока начинает внезапно падать и в некоторых случаях может стать даже равной нулю. Если однако приложенное напряжение достаточно для поддержания на анодной поверхности потенциала, необходимого для выделения кислорода, то прохождение тока разумеется не прекратится, но за его счет будет лишь выделяться кислород, а железо растворяться не будет. Следует отметить, что ставшее пассивным железо не будет растворяться и в том случае, если плотность тока будет вновь снижена до значения меньшего того, при котором пассивность наступила. Если ток прекратить, то в кислой среде пассивность обычно через некоторый промежуток времени прекращается, в нейтральной удерживается в течение значительно большего времени, а в щелочной восстановления активного состояния обыкновенно не наступает. Присутствие в растворе хлоридов  [c.467]


Цветные металлы, в свою очередь, подразделяют в зависимости от их физико-механических свойств на ряд групп тяжелые (никель, медь, цинк, олово, свинец), легкие (литий, бериллий, натрий, магний, алюминий, калий, кальций, титан, рубидий, стронций, цезий, барий) благородные (рутений, родий, палладий, серебро, осмий, платина, золото) и редкие, которые, в свою очередь, условно делят на тугоплавкие (ванадий, цирконий, ниобий, молибден, тантал, вольфрам), редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.), рассеянные (германий, селен, рений и др.) и радиоактивные (радий, торий, протактиний, уран).  [c.5]

Тщательное изучение электронных характеристик переходных металлов и их сплавов в связи с разработкой сверхпроводящих материалов выявило, что свойства металлов IV и VI групп не изменяются монотонно, как модуль С, а имеют низкие значения для титана, циркония, гафния, далее проходят через максимум вблизи металлов V группы — ванадия, ниобия и тантала — (4,7—4,8 эл/атом), тогда как электронным концентрациям, лежащим вблизи металлов VI группы — хрома, молибдена, вольфрама и равным 5,7—6,0 эл/атом, вновь отвечает минимум. При переходе к металлам VII—VIII групп наблюдается второй максимум вблизи технеция и рения (6,7—7 эл/атом), а затем новый минимум, приходящийся на рутений и осмий (8 эл/атом).  [c.54]

Под тугоплавкими условно понимают металлы, температура плавления которых превышает температуру плавления хрома (1875° С). Таким образом, к тугонлавким металлам в порядке возрастания температур плавления следует отнести хром, ванадий, родий, гафний, рутений, иридий, молибден, тантал, ниобий, осмий, рений и вольфрам.  [c.460]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]

В промышленности использзтот преимущественно сплавы этих металлов, упрочняемые путем упрочнения твердого раствора и образования мелкодисперсной фазы. Наиболее сильными упрочнителями для ниобия являются цирконий, гафний, вольфрам, молибден, ванадий для тантала - ванадий, молибден, гафний, вольфрам, а также рутений, рений, осмий для ванадия - титан, цирконий, ниобий, вольфрам. Для получения сплавов с повышенной жаропрочностью на основе ниобия и тантала в качестве легирующих элементов используют углерод, азот, бор, которые наряду с некоторым упрочнением твердого раствора образ тот вторую дисперсн)то фазу (карбиды, нитриды, бориды), упрочняющую металл особенно эффективно при одновременном введении титана, циркония, гафния. Из рассматриваемых металлов V группы наибольшее применение имеют сплавы на основе ниобия.  [c.151]

Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]

Непрерывные твердые растворы с никелем дают маргаиец, железо, кобальт, медь, палладий, родий, иридий, плагина. Ограниченные твердые растворы с никелем образуют бериллий, бор, углерод, магний, алюминий, кремний, фосфор, титан, ванадий, хром, цинк, галлий, германий, мышьяк, цирконий, ниобий, молибден, рутений, индий, олово, сурьма, лантан, тантал, вольфрам, рений, осмий, висмут и уран.  [c.340]

Однако даже если такие среды будут созданы, то за короткий промежуток времени пребывания отработавших газов в выпускной системе, особенно, когда температура их невысокая, указанные реакции не успевают протекать. Для ускорения этих реакций используют катализаторы. Наиболее эффективными являются катализаторы на основе благородных металлов — платины и палладия. Платина — универсальный катализатор, обеспечиваюищй быстрое протекание реакций окисления и восстановления. Палладий, как правило, используют для ускорения окислительных реакций. Для интенсификации восстановительных реакций применяют радий, рутений, окислы меди, марганца, ванадия, хрома и др. Активность этих катализаторов объясняется низкой прочностью связи кислород — металл. Однако их эффективность значительно ниже по сравнению с платиной и палладием, поэтому, несмотря на высокую стоимость, для нейтрализа-ции вредных веществ ДВС наиболее широко используют каталитические нейтрализаторы на основе благородных металлов. Катализатор наносят на поверхность носителя или пропитывают его. В качестве носителей используют керамические или изготовленные из тугоплавких окислов (например, окислов алюминия АЬОз) блоки или гранулы с развитой поверхностью.  [c.562]



Смотреть страницы где упоминается термин Рутений-ванадий : [c.198]    [c.384]    [c.43]    [c.555]    [c.42]    [c.43]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Рутений-ванадий



ПОИСК



Ванадий 273, 275, ЗСО

Ванадит

Рутений



© 2025 Mash-xxl.info Реклама на сайте