Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение уравнений сохранения в интегральной форме

Учебник содержит систематическое изложение теоретических основ механики жидкости и газа в объеме курса, читаемого для соответствующей специальности. Он знакомит с методами расчета до-, около- и сверхзвуковых потоков, с расчетом двухфазных потоков, теорией пограничного слоя, расчетом течений при подводе теплоты, массы и т. п. Автор стремился обратить внимание на физическую сущность задач и расчетную сторону проблем, что важно для инженеров. Основные уравнения записаны в интегральной и дифференциальной формах с применением индексной записи. Это позволило сделать все преобразования компактными и наглядными особенно при рассмотрении общих случаев. Применение уравнений сохранения в интегральной форме дает возможность просто решать ряд инженерных задач.  [c.3]


ПРИМЕНЕНИЕ УРАВНЕНИЙ СОХРАНЕНИЯ В ИНТЕГРАЛЬНОЙ ФОРМЕ  [c.23]

Приведем несколько примеров применения уравнений сохранения в интегральной форме, на которых можно глубже разобраться в существе самих уравнений и методике их использования. Полученные результаты представляют также самостоятельный интерес, так как используются в технических расчетах.  [c.23]

Использование уравнений движения в строго консервативной форме позволяет построить консервативные разностные схемы, т. е. такие, для которых выполняются интегральные законы сохранения, справедливые для исходных уравнений. При этом важно, чтобы выполнялись законы сохранения не только полной энергии, но и дополнительные балансы по отдельным видам энергии [7]. Если уравнения движения в дифференциальной форме преобразовать таким образом, что искомыми переменными становятся консервативные величины р, ри р , то применение к этим уравнениям конечно-разностных схем, обладающих свойствами консервативности, обеспечивает в разностной форме сохранение массы, количества движения и энергии.  [c.77]

Некоторые задачи. могут быть просто решены применением уравнений сохранения, записанных в интегральной форме. Наиболее просто решаются задачи для установившегося течения, так как в этом случае необходи.чьт данные о потоке только на поверхностях, ограничивающих область течения, и нет необходимости рассматривать особенности течения внутри области. Таким образо.ч могут быть получены только суммарные характеристики потока. Важно также отметить, что уравнения в интегральной форме пригодны для расчета потоков с разрывами, т. е. скачкообразны.ми изменения.чи параметров.  [c.23]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]


Рассмотренные ниже задачи выравнивания заключаются в определении параметров выравнившегося потока, и их решение достигается путем применения основных уравнений сохранения неразрывности, количества движения и энергии в интегральной форме к подходящим образом выбранному контрольному контуру.  [c.232]


Смотреть главы в:

Гидроаэромеханика: Учебник для вузов.  -> Применение уравнений сохранения в интегральной форме



ПОИСК



Сохранение

Уравнения интегральные

Уравнения сохранения

Уравнения сохранения в интегральной форме

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте