Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Общие свойства задач на экстремум

Если речь идет о линейных системах (16.1) и область U и функция Ф в (16.2) обладают подходящими свойствами выпуклости (или вогнутости), то многие такие задачи о минимаксе укладываются в схемы, обсужденные в 10 (см. стр. 193—197). В нелинейных случаях, а также в некоторых линейных нерегулярных случаях приложение описанных выше способов исследования (в частности, принципа максимума или классических критериев вариационного исчисления) потребовало их усовершенствования. Весьма общий подход к выводу необходимых условий экстремума для проблем вариационного исчисления, охватывающий, в частности, широкий круг задач об оптимальном управлении, описан в работах А. Я. Дубовицкого и А. А. Милютина (1963—1965). В этих работах были выведены необходимые условия минимума F (w ) для функционала F (w), заданного на элементах w из некоторого нормированного пространства ly . Допустимые значения предполагаются стесненными условием типа равенств или неравенств. При широких предположениях о геометрических свойствах этих ограничений, которые вместе с условием экстремума порождают в пространстве гг некоторые выпуклые конусы и линейные подпространства вариаций, выводятся искомые необходимые условия минимума. Эти условия сводятся к отсутствию общих точек у открытых частей упомянутых конусов и подпространств. Формулировка этого геометрического факта в терминах линейных функционалов и составляет содержание  [c.213]


В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]



Смотреть главы в:

Вариационные принципы механики  -> ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Общие свойства задач на экстремум



ПОИСК



Вариационное исчисление

Задача вариационная (задача

Задача вариационная общая

Задача вариационного исчисления

Задача общая (задача

Исчисление — ш (ш-исчисление)

Общие свойства

Ряд вариационный

Экстремум



© 2025 Mash-xxl.info Реклама на сайте