Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние частиц в поле центральной силы

РАССЕЯНИЕ ЧАСТИЦ В ПОЛЕ ЦЕНТРАЛЬНОЙ СИЛЫ 97  [c.97]

Мы закончим этот параграф вопросом о рассеянии частиц в поле центральной силы. То обстоятельство, что это поле зачастую создается другой частицей, означает лишь то, что мы должны вместо массы свободной частицы всюду вводить приведенную массу. Изучая рассеяние частиц, интересуются не столько фактическим процессом рассеяния, происходящим тогда, когда рассеиваемая частица находится вблизи рассеивающей частицы, сколько конечным результатом процесса рассеяния. Иначе говоря, мы заинтересованы в таких величинах, как поперечник (или сечение) рассеяния, или же вероятность того, что рассеяние произойдет на некоторый определенный угол. Начальные условия задаются энергией и моментом импульса падающих (рассеиваемых) частиц. Пусть v будет скоростью налетающих частиц на бесконечности, и пусть прицельное расстояние, т. е. кратчайшее расстояние, на котором падающая частица прошла бы около рассеивающего центра, если бы он не изменял ее движения, будет равно р (см. рис. 6). Выражая энергию и момент импульса через о и р,  [c.29]


Рассеяние классических частиц в поле центральных сил или друг на друге описывается посредством представления о траекториях движения частиц. Траектория наиболее просто получается из гамильтониана с помощью уравнения Гамильтона — Якоби.  [c.123]

Сведение задачи о рассеянии двух частиц к задаче о движении одной частицы в центральном поле. По определению, в с. ц. м. радиус-вектор центра масс R равен нулю, откуда в силу (2.1) вытекает следующее условие на радиус-векторы Pi и Га взаимодействующих частиц  [c.26]

Рассеяние частиц в поле центральной силы. Исторически интерес к центральным силам возник из астрономических задач о движении планет. Однако нет оснований считать, что интерес к этим силам ограничивается лишь задачами такого рода. Мы уже указывали на другой пример применения теории центральных сил — задачу о движении электрона в атоме Бора. Мы сейчас рассмотрим еще одну задачу о центральных силах, допускающую решение с позиций классической механики. Это — задача о рассеянии частиц в поле центральной силы. Конечно, если эти частицы имеют масштабы атома, то следует ожидать, что некоторые результаты классического исследования будут часто физически неправильными, так как квантовые эффекты в этих случаях обычно значительны. Тем не менее, имеется много классических полох<ений, которые остаются верными и здесь и поэтому могут служить в качестве достаточно хорошего приближения.  [c.97]

Задача о рассеянии частиц в поле центральной силы представляет собой вторую задачу, связанную с упругими столкновениями частиц (см, 15). Она допускает как чисто классическое, так и квантовомеханическое решение. Если рассеиваемые частицы имеют масштабы атома, то наиболее полным и строгим является решение, получаемое с помощью квантовой механики. Классическое решение задачи, которое мы получим ниже на основе общей теории движения в центрально-симметрическом поле, в этом случае следует рассматривать лишь как некоторое приближение к точному квантовомеха-ническому решению.  [c.127]

Приведение задачи о рассеянии к лабораторной системе координат. В предыдущем параграфе мы рассматривали рассеяние частиц в поле неподвижного заряда, т. е. изучали движение одной точки. На практике, однако, в этом процессе всегда участвуют два взаимодействуюш,их тела, например в опыте Резерфорда мы имеем а-частицу и атомное ядро. При. этом вторая частица не является неподвижной, а перемещается в результате взаимодействия с первой. Но мы знаем, что задачу о движении двух тел, находящихся под действием центральной силы взаимного притяжения или отталкивания, можно свести к задаче о движении одного тела. Поэтому может показаться, что единственная поправка, которую нам надлежит сделать, состоит в замене массы т на приведенную массу ц. Однако в действительности вопрос этот не так прост. Дело в том, что измеряемый в лабораторных условиях угол рассеяния (мы обозначим его через ) есть угол между конечным и начальным направлениями движения частицы ). В то же время угол 0, вычисляемый по формулам соответствующей задачи для одного тела, есть угол между конечным и начальным направлением  [c.101]



Смотреть страницы где упоминается термин Рассеяние частиц в поле центральной силы : [c.9]    [c.8]    [c.89]   
Смотреть главы в:

Классическая механика  -> Рассеяние частиц в поле центральной силы



ПОИСК



Ось центральная

Поле рассеяния

Поле центральное

Рассеяние частиц

Рассеянное поле

Сила центральная



© 2025 Mash-xxl.info Реклама на сайте