Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Разрушение сплавов алюминиевых высокопрочных, определение

Указанные уравнения и критерии обоснованно применяют при оценке прочности конструкций из малопластичных металлов (высокопрочные стали, алюминиевые и титановые сплавы) и при определении критических размеров дефектов вне зон концентрации для элементов из пластичных материалов. В связи с этим в качестве одной из основных выдвигается задача исследования механических закономерностей разрушений (хрупких, квази-хрупких и вязких) ири наличии дефектов, допускаемых современными требованиями контроля.  [c.21]


Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

Во время эксплуатации многие высокопрочные алюминиевые сплавы при определенных условиях могут разрушаться при напряжениях значительно более низких, чем предел текучести, в результате КР (коррозионного растрескивания). Большие потенциальные потери несущей способности конструкций из-за КР могут быть оценены по данным, приведенным в табл. 4 (см. значения порогового уровня напряжений при КР). Так как такое растрескивание часто имеет место при напряжениях ниже уровня предела текучести, для анализа этого процесса могут быть применены основные положения линейной механики вязкого разрушения. Основным в механике разрушения является положение, согласно которому быстрое распространение механической трещины происходит при условии, что коэффициент интенсивности напряжений в вершине трещины будет равным или несколько превышать критическое значение Ки, характеризующее вязкость разрушения материала.  [c.151]


В связи с изучением механизма коррозионного растрескивания (КР) и определением склонности к этому виду разрушения алюминиевых сплавов существенное значение имеет вопрос о растворах для ускоренных испытаний на склонность к коррозионному растрескиванию (СКР). Такой вид разрушения, возникающий при одновременном действии растягивающих напряжений и коррозионной среды, нередко свойствен высокопрочным алюминиевым сплавам. Повышение прочности сплавов, например за счет легирования или старения, часто сопровождается и повышением СКР.  [c.123]

Основная цель настоящей главы сводится к критическому обзору количественных данных по КР, которые накоплены к настоящему времени. Достижения механики разрушения последних лет позволяют проводить количественный анализ при испытаниях на КР [46, 47] и сопоставлять влияние среды и металлургических факторов на количественной основе, как это будет показано-в последующих разделах. До разработки новых методов испытаний наиболее удобным количественным методом были испытания по времени до разрушения на гладких образцах. Он применялся [48] на протяжении почти 50 лет для оценки ч)(в( вительности к КР высокопрочных алюминиевых сплавов. Гладкие образцы также используются для определения порогового уровня напряжений (Ткр, ниже которого КР не наблюдается в течение определенного периода вре-  [c.152]

Более перспективна для разработки новых сплавов система Си—А1—Мп. Это положение основывается на ряде положительных свойств марганца как легирующего компонента. Введение марганца в алюминиевые бронзы повышает их прочностные и улучшает технологические свойства. Легирование марганцем способствует также повышению стойкости сплавов против кавитационного разрушения и наиболее полному раскислению меди в процессе выплавки бронзы. Химические составы и механические свойства бронз системы Си—А1—Mg, наиболее широко применяемых в отечественной и зарубежной промышленности, приведены в табл. I. 35. При этом следует отметить, что зарубежные сплавы системы Си— А1—Мп по составу практически не отличаются от отечественной бронзы Бр. АМц9-2. В мировой промышленности, таким образом, нашли применение сплавы, лежащие на диаграмме состояния системы Си—А1—Мп в области повышенного содержания алюминия при нижнем, ограниченном содержании марганца. В связи с этим в настоящее время преждевременно считать, что с точки зрения изыскания высокопрочных сплавов система Си—А1—Мп полностью исчерпана для дальнейших исследований. Определенный интерес представляет изучение свойств сплавов с повышенным содержанием марганца, который положительно влияет на уровень механических и технологических свойств легированных бронз. Алюминиевые бронзы с повышенным содержанием марганца, очевидно, могут найти себе применение как новые литейные и деформируемые сплавы. При этом для методически наиболее правильных изысканий необходимо более конкретное представление о медном угле диаграммы состояния системы Си—А1—Мп.  [c.86]

Поэтому интенсивные исследования последних десяти пятнадцати лет в области механики разрушения как в СССР, так и за рубежом в первую очередь были направлены на унификацию и стандартизацию методов определения критических значений коэффициентов интенсивности напряжений Практическая возможность такой унификации в первую очередь относится к высокопрочным сталям (с пределом текучести 1200—3000 МПа), высокопрочным алюминиевым и титановым сплавам, когда корректные значения могут быть получены при таких температурах и толщинах образцов, которь1е отражают реальные условия конструирования и эксплуатации.  [c.35]


Смотреть страницы где упоминается термин Разрушение сплавов алюминиевых высокопрочных, определение : [c.306]    [c.205]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.151 ]



ПОИСК



В95 высокопрочные

Высокопрочные алюминиевые сплавы

Разрушения определение



© 2025 Mash-xxl.info Реклама на сайте