Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ядерные реакции под действием заряженных частиц

Подробно взаимодействие нейтронов со средой (в том числе ядерные реакции под действием нейтронов) будет рассмотрено во второй части книги. Там же будут разобраны ядерные реакции под действием заряженных частиц и у-квантов. Наконец, в части третьей будут рассмотрены некоторые вопросы рассеяния протонов, нейтронов и электронов, особенности взаимодействия со средой нейтрино (и антинейтрино), мезонов (jx, я и /С), гиперонов, антинуклонов, антигиперонов и квазичастиц.  [c.203]


ЯДЕРНЫЕ РЕАКЦИИ ПОД ДЕЙСТВИЕМ ЗАРЯЖЕННЫХ ЧАСТИЦ  [c.432]

Гл. IX. Ядерные реакции под действием заряженных частиц  [c.436]

В гл. IX рассмотрены ядерные реакции под действием заряженных частиц. Такие реакции имеют особенности, обусловленные наличием у них заряда.  [c.452]

По роду участвующих в ядерных реакциях частиц различаются а) реакции под действием нейтронов б) реакции под действием фотонов в) реакции под действием заряженных частиц (протонов, дейтронов, а-частиц и многозарядных ионов).  [c.264]

Во второй части описаны общие закономерности ядерных реакций, боровский механизм протекания ядерных реакций и механизм прямого взаимодействия адерные реакции под действием нейтронов, некоторые вопросы нейтронной физики (рассеяние и замедление быстрых и диффузия тепловых нейтронов, нейтронная спектроскопия) и элементы оптической модели ядра ядерные реакции под действием различных заряженных частиц (протонов, а-частиц и дейтонов) и ядерные реакции под действием -у-квантов реакции деления, реакции, приводящие к образованию трансурановых элементов, и термоядерные реакции.  [c.12]

Известно много различных типов реакций. В зависимости от частиц, вызывающих реакции, их можно классифицировать на реакции под действием нейтронов, под действием заряженных частиц и под действием у-квантов. Последние идут под действием не ядерного, а электромагнитного взаимодействия, но также относятся к ядерным реакциям, так как взаимодействие происходит в области ядра и приводит к его преобразованию .  [c.257]

В соответствии с характерными особенностями ядерные реакции удобно разделить на реакции под действием нейтронов, под действием заряженных частиц и под действием у-квантов, а также обособить реакции деления тяжелых ядер, термоядерные реакции и реакции образования трансурановых элементов.  [c.281]

Легко видеть, что необходимым условием для возможности цепной реакции синтеза является очень высокая температура. Действительно, при рассмотрении ядерных реакций, идущих под действием заряженных частиц, было показано, что в этих процессах существенную роль играет кулоновский барьер, который препятствует ядерному взаимодействию даже при Q > О, если кинетическая энергия бомбардирующей частицы недостаточно велика. У легких ядер кулоновский барьер невысок, но все же для эффективного протекания реакций даже со столь легкими ядрами как в реакциях (65.1) и (65.2) нужны дейтоны с энергией примерно 0,1 Мэе.  [c.479]


Ускорители заряженных частиц. Для получения нейтронов используются ядерные реакции под действием заря-  [c.305]

В этой области энергий основную роль играют ядерные реакции под действием нейтронов, так как для медленных заряженных частиц крайне мала вероятность проникновения через кулоновский барьер (особенно для тяжелых ядер).  [c.182]

Ядерные реакции под действием дейтонов. Ядерные реакции под действием дейтонов имеют большое практическое значение. Выход этих реакций обычно гораздо больше выходов соответствующих реакций под действием других заряженных частиц. Кроме того, следствием малой величины энергии связи дейтона является большая энергия возбуждения промежуточного ядра, и, как правило, реакции с поглощением дейтона экзоэнергетические (Q>0).  [c.187]

Ядерные реакции классифицируют в зависимости от характера частиц, вызывающих эти реакции, на ядерные реакции под действием нейтронов, заряженных частиц (протонов, а-частиц, дейтонов) и под электромагнитным действием 7-квантов. Кроме того, делают отличия по типу участвующих в ядерных реакциях ядер ядерные реакции идут на легких ядрах А < 50), средних (50 < А < 100) и тяжелых А > 100) при малых (меньше 1 кэВ), средних (от 1 кэВ до 1 МэВ), больших (от 1 до 100 МэВ) и высоких (свыше 100 МэВ) энергиях вызывающих их частиц.  [c.506]

Различаются ядерные реакции при малых, средних и высоких энергиях частиц. Реакции при малых энергиях (порядка эВ) происходят в основном с участием нейтронов. Реакции при средних значениях (до нескольких МэВ) происходят также под действием заряженных частиц, у-кван-  [c.484]

Заряженные частицы можно разгонять по определенным траекториям комбинированным действием электрических и магнитных полей. Устройство, в котором под действием электрических и магнитных полей создается пучок заряженных частиц высокой энергии, называется ускорителем. В настоящее время ускорители различных типов являются практически единственными источниками заряженных частиц, используемых для осуществления ядерных реакций и реакций с элементарными частицами, В ускорителях получают пучки частиц с энергиями от нескольких МэВ до сотен ГэВ, причем верхний предел обусловлен не принципиальными трудностями, а существующим состоянием ускорительной техники. По грубой оценке технический прогресс приводит к повышению максимальной энергии ускорителя на порядок за десятилетие,  [c.466]

ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]


В соответствии с общей схемой ИТС, DT-топливо помещается в сферическую капсулу, в которой оно подвергается сжатию до колоссальных плотностей (300-1000) г-см за счет импульса давления, обеспечиваемого внешним источником энергии — драйвером. В момент наибольшего сжатия достигаются необходимые условия по плотности и температуре вещества и происходит зажигание топлива, т.е. начинает идти ядерная реакция синтеза D+T с выделением энергии в виде нейтронов и а-частиц. Нейтроны покидают зону реакции, а а-частицы тормозятся и отдают свою энергию топливу, содействуя развитию самоподдерживающегося процесса горения. Для этого необходимо, чтобы оптическая толщина сжатого топлива pR R — радиус сжатого топлива) превосходила универсальное значение, рЯ 0,5 г-см , определяемое пробегом а-частиц с энергией 3,5 МэВ, темпом лучистых потерь энергии из DT-плазмы и критерием инерциального удержания. В этих условиях заряженные продукты реакции синтеза — а-частицы, передают значительную часть своей энергии плотной плазме и процесс горения происходит при температурах 30-100 кэВ, соответствующих максимальным значениям скорости DT-реакции. Прежде чем реагирующее топливо разлетится под действием сил гидродинамического давления за время 10" с, должно прореагировать 30% массы DT. Таким образом, требование сильного сжатия термоядерного топлива обусловлено необходимостью получения значительного коэффициента выгорания и большого коэффициента термоядерного усиления энергии G (см. гл. 3.) при относительно малой (не более нескольких миллиграмм) массе DT-топлива. Проблема равномерности сжатия топлива в ИТС является ключевой. В настоящее время установлены весьма жесткие требования к симметрии обжатия топливной капсулы — допускается неравномерность в пределах 1% [1]. Такая задача решается двумя способами  [c.17]

Ядерные реакции, помимо нейтронов, вызываются заряженными частицами протонами (ядрами обычного водорода), Дейтонами (дейтронами) (ядрами тяжелого водорода iD), а-частицами (ядрами гелия аНе), многозарядными ионами тяжелых химических элементов. Источниками заряженных частиц могут быть естественно-радиоактивные химические элементы (VI.4.4.Г), ускорители (VI.4.16.r) космическое излучение. Ядерные реакции могут также происходить под действием у-квантов — фотоядерные реакции [ядерный фотоэффект).  [c.485]

В данной главе были рассмотрены особенйости протекания ядерных реакций под действием заряженных частиц и Y-квантов, и этим показано, что не все характеристики реакций могут быть объяснены на основе теории составного ядра Бора. Следовательно, необходимо описывать некоторые реакции иными механизмами. Одним из них является механизм прямых взаимодействий.  [c.189]

Ускорители заряженных частиц. Для получения нейтронов используют ядерные реакции под действием заряженных частиц (обычно дейтронов, протонов и а-частиц), а также фотонейтронные реакции под действием тормозного (рентгеновского) излучения. Эффективное сечение таких реакций зависит от энергии указанных частиц и электростатического барьера ядра-мишени. Энергетический спектр возникающих нейтронов и их угловое распределение определяются видом и энергией частиц, а также характеристиками облучаемых ядер и толщиной мишени (рис. 34).  [c.53]

Ускорители заряженных частиц. Для получения нейтронов используются ядерные реакции под действием заряженных частиц (обычно дейтронов, протонов и а-частиц), а также фотонейтронные реакции под действием тормозного (рентгеновского) излучения. Эффективное сечение таких реакций зависит от  [c.261]

Классификация ядерных реакций. Ядерные реакции обычно классифицируют в соответствии с природой бомбардирующих частиц, вызывающих реакции ядерные реакции под действием ней-тро1иов, заряженных частиц (протонов, а-частиц, дейт0 Н0в) и под действием квантов.  [c.171]

Рассмотрено пространственно-энергетическое распределение нейтронов в активной зоне реактора. Изложены методы расчета теило-выделения за счет осколков деления, замедления нейтронов, реакций под действием нейтронов с испусканием заряженных частиц, поглощения энергии у-излучения. Проведено сравнение расчетных и экспериментальных данных о теиловыделенни в ядерном реакторе.  [c.296]

С 30-х годов значение крупнейшего центра физической науки в Советском Союзе приобрел Ленинградский физико-технический институт (ЛФТИ), реорганизованный из Физико-технической лаборатории НТО ВСНХ и до 1951 г. возглавлявшийся акад. А. Ф. Иоффе — основателем одной из ведущих советских физических школ. В этом институте начинали свою научную деятельность многие известные ученые. В нем были выполнены фундаментальные работы в области ядерной физики изучение свойств и структуры атомных ядер, исследование ядерных реакций и космических лучей, открытие явления ядерной изомерии и пр. По инициативе и при участии его сотрудников были организованы физико-технические институты в Харькове (1930 г.), Свердловске (1932 г.) и других городах под непосредственным руководством И. В. Курчатова в 1937 г. в Ленинградском радиевом институте был введен в действие первый на Европейском континенте электромагнитный резонансный ускоритель заряженных частиц—циклотрон (рис. 41) на  [c.150]

РАДИОЛЮМИНЕСЦЕНЦИЯ - люминесценция нод действием ядерных излучений а-частиц, электронов, улучей, протонов, нейтронов и т. д. Р. возбуждается в конечном счете всегда только заряженными частицами. Так, напр., Р. под действием у-лучей вызывается электронами, получающими в веществе люминофора значительную кинетич. энергию при фото- или комнтон-эффекте нод действием нейтронов — протонами отдачи или а-частицами, возникающими в результате ядерных реакций нейтронов с нек-рыми ядрами (напр., ВЮ) (см. Сцинтилляционный счетчик).  [c.295]


Смотреть страницы где упоминается термин Ядерные реакции под действием заряженных частиц : [c.440]   
Смотреть главы в:

Введение в ядерную физику  -> Ядерные реакции под действием заряженных частиц



ПОИСК



Заряд

Заряды частиц

Реакции под действием а-частиц

Реакции ядерные

Ядерные реакции под действием а-частиц

Ядерные реакции под действием легких заряженных частиц

Ядерные реакции с заряженными

Ядерные реакции с заряженными частицами

Ядерный заряд



© 2025 Mash-xxl.info Реклама на сайте