Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точка особая (точка покоя) фазового про

Критерии существования замкнутых траекторий на фазовой плоскости. Исследования особых точек системы уравнений (163) проясняют картину поведения траекторий на фазовой плоскости в их окрестности, однако не позволяют окончательно изучить колебательные процессы, описываемые системой (163). Для системы (163) наличие колебательного процесса связано с существованием замкнутой траектории на фазовой плоскости. Пока не существуют общие теоретические методы, позволяющие установить существование замкнутых траекторий и определить место их расположения на фазовой плоскости. Общий геометрический принцип, с помощью которого можно решить вопрос о существовании замкнутой траектории системы (163), а также вопрос о существовании колебательного процесса в этой системе известен как принцип кольца и состоит в следующем.На фазовой плоскости выделяем несколько особых точек, сумма индексов которых равна + 1, и окружаем их двумя замкнутыми кривыми так, чтобы в полученной кольцеобразной области К не было особых точек. На границе Г этой области наносим направления вектора скорости изображающей точки. В кольцеобразной области /С существует по крайней мере одна замкнутая траектория.  [c.111]


Можно утверждать и обратное, именно, что при вырождении системы только особая точка типа седла может из неустойчивой превратиться в устойчивую. Это происходит тогда, когда из двух корней при вырождении исчезает положительный корень. С точки зрения изображения движения на фазовой плоскости это значит, что вследствие появившейся в результате вырождения связи между координатой и скоростью представляющая точка может двигаться только по той единственной сепаратрисе, по которой происходит движение по направлению к седлу. Ясно, что пока мы рассматриваем только это движение, седло кажется нам устойчивой особой точкой. В действительности достаточно какого угодно малого отклонения представляющей точки в сторону от сепаратрисы, чтобы в конце концов представляющая точка навсегда ушла из области, близкой к состоянию равновесия. Но в реальной системе начальные условия никогда не могут быть заданы абсолютно точно, хотя бы вследствие наличия флуктуаций. Значит, реальная система вследствие наличия самоиндукции и неизбежных отклонений в начальных условиях не сможет находиться в таком состоянии равновесия сколько-нибудь длительное время. Только оба эти обстоятельства вместе — наличие малой самоиндукции и неизбежные отклонения в начальных условиях — приводят к тому, что система уходит из состояния равновесия, которое нам казалось устойчивым.  [c.741]

Хотя предмет локального анализа — изучение относительного поведения близлежащих орбит либо, в случае окрестности периодической орбиты, поведения орбит или их частей, пока они остаются достаточно близко к периодической орбите, главная цель теории гладких динамических систем состоит в том, чтобы понять глобальное поведение нелинейных отображений. Иногда локальный анализ играет решающую роль в глобальных рассмотрениях. Это случается, например, если периодическая точка является аттрактором, т. е. близкие орбиты асимптотически приближаются к ней со временем (см. 1.1 и 3.3). В более общей ситуации мы можем пытаться локализовать определенные части фазового пространства, которые играют особенно важную роль при изучении асимптотического поведения, и исследовать орбиты внутри этих частей или вблизи их. Может также оказаться, что при исследовании конкретной проблемы, представляемой динамической системой, орбиты с определенными начальными условиями представляют особый интерес.  [c.29]


Смотреть страницы где упоминается термин Точка особая (точка покоя) фазового про : [c.223]    [c.282]    [c.219]    [c.133]   
Прикладная механика твердого деформируемого тела Том 3 (1981) -- [ c.0 ]



ПОИСК



Особые

Точка особая

Точка покоя

Точка фазовая



© 2025 Mash-xxl.info Реклама на сайте