Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа 1-го рода ковариантные

Для получения уравнений Лагранжа надо выразить кинетическую энергию Т системы через обобщенные координаты и скорости, найти обобщенные силы и произвести указанные в (11) дифференцирования функции Т qj t) по обобщенным координатам, обобщенным скоростям и времени. Заметим, что форма уравнений Лагранжа не зависит от выбора обобщенных координат i, 25 5 Qn- При другом их выборе изменились бы только функции Т и Q, а сама форма уравнений (11) осталась бы той же. В связи с этим говорят, что уравнения Лагранжа второго рода обладают свойством ковариантности.  [c.270]


И. Явный вид уравнений Лагранжа 2-го рода и их ковариантность  [c.224]

Чрезвычайно удобная и выразительная, ковариантная форма уравнений движения (4.83) как бы вуалирует структуру левых частей уравнений движения не видно, как входят в уравнения первые и вторые производные от обобщенных координат по времени. Поэтому, ограничиваясь классическими системами, мы рассмотрим явный вид уравнений Лагранжа 2-го рода.  [c.225]

Пришли к уравнениям движения в форме (4.7), разрешенным относительно обобщенных ускорений. В ковариантной записи получим уравнения Лагранжа второго рода. Таким образом, последние выражают закон Ньютона для движения точки, изображающей рассматриваемую систему материальных точек в пространстве с метрикой, определяемой квадратичной формой 2ТсИ-. Тем самым законам движения придано условно наглядное геометрическое пояснение. Так, словесно повторив сказанное в пп. 7.5 и 7.6, можно записать уравнения движения в форме естественных уравнений, непосредственно следующей из (5.29)  [c.306]

Благодаря этому замечательному свойству уравнения Лагранжа 2-го рода называются ковариантными сопреобразующимися). Заметим, что ковариантность уравнений Лагранжа 2-го рода можно проверить прямыми выкладками.  [c.225]


Теоретическая механика (1981) -- [ c.225 ]



ПОИСК



I рода

I рода II рода

Ковариантность

Лагранжа 1-го рода

Лагранжа 1-го рода 2-го рода

Родан

Родиан

Родий

Родит

Явный вид уравнений Лагранжа 2-го рода и их ковариантность



© 2025 Mash-xxl.info Реклама на сайте