Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Составляющая активных сил по лагранжевой координате

Равенство (72.13) составляет содержание принципа Лагранжа — Даламбера при движении механической системы в неинерци-альной системе координат в неинерциальной системе координат, если на механическую систему наложены удерживающие идеальные связи, то сумма элементарных работ всех сил инерции, активных сил, переносных сил инерции и сил инерции Кориолиса, действующих на механическую систему на любом виртуальном перемещении, равна нулю в каждый данный момент времени.  [c.107]


Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


В главе АНАЛИТИЧЕСКАЯ МЕХАНИКА вы научитесь решению задач статики с помош ью принципа возможных скоростей. Вы научитесь также составлять наиболее универсальные уравнения движения динамических систем. К ним относятся обш ее уравнение динамики, уравнение Лагранжа 2-го рода и уравнения Гамильтона. Первое знакомство с этой темой немного пугает сложностью вводятся новые термины типа обобш енные координаты или виртуальные переме-щения . На самом деле все просто. Обобш енные координаты — это параметры, однозначно описываюш ие положение системы, например, углы поворота или обычные декартовы координаты. Виртуальные (или возможные) перемепдения — это бесконечно малые воображаемые перемепдения, допускаемые связями. Силы, действуюш ие на систему, будем делить на активные и реакции связей.  [c.279]


Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.288 ]



ПОИСК



Координаты Лагранжа

Координаты лагранжевы

Составляющая активных сил по лагранжевой координате координате

Составляющая активных сил по лагранжевой координате координате



© 2025 Mash-xxl.info Реклама на сайте