Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Селекция синхронная

Селекция (направления) 751. Селекция синхронная 760. Селен-теллур 810.  [c.488]

Рис. 5.16. Схема лазера на красителе с синхронной накачкой и селекцией импульсов. Рис. 5.16. <a href="/info/565190">Схема лазера</a> на красителе с синхронной накачкой и селекцией импульсов.

Методы селекции (передачи положения) далеко не исчерпываются приведенным перечислением. Весьма часто применяются комбинации. Напр, соединение метода импульсного и продолжительности дает богатейшую область т. н. кодовой селекции. Соединение метода полярности и синхронного может сильно увеличить количество возможных команд. Кроме того передаваемые независимые команды м. б.  [c.382]

Реализация зависимости (4.1), описывающей условия оптимального приема, для случая, когда сигнал 5 (а) является последовательностью п импульсов, сводится к стробированию, т. е. к селекции по параметру а При этом из каждого периода повторения вырезается участок, соответствующий ширине импульса а затем происходит интегрирование. Такая схема синхронного накопления со стробированием находит практическое применение в оптико-электронных системах, предназначенных для локации.  [c.76]

Принцип действия дефектоскопа основан на построчном считывании с магнитной ленты полей, зафиксированных в процессе контроля сварных соединений и преобразований информации в электрические сигналы многоэлементным микроферрозондо-вым преобразователем, с последующей обработкой и частотной селекцией сигналов и регистрацией результатов на электрохимической бумаге. Запись сигналов ведется по четырем каналам — по одному каналу записывается плоскостное полутоновое изображение рельефа магнитного поля, записи по остальным каналам дают возможность судить по амплитуде сигнала от дефектов и их местоположении по толщине изделия. Получение в дефектоскопе двухмерного плоскостного изображения достигается за счет возвратно-поступательного движения по электрохимической бумаге подвижного электрода и пропускания через пишущие электроды (подвижный и неподвижный) электрического тока, пропорционального величине сигнала, поступающего с феррозондов. Подвижный электрод движется синхронно с движением феррозондов над магнитной лентой. Степень потемнения бумаги оказывается тем большей, чем больший по амплитуде сигнал снимается с феррозондов.  [c.46]

Режим ультракоротких импульсов. В работе [15] была реализована стационарная генерация ультракоротких импульсов ( = 15 пс) в лазере на красителе (родамин-6С) с пассивным обращающим зеркалом на BaTiOa, синхронно накачиваемом квазинепрерывным (/ = 76 МГц) Аг-лазером с синхронизацией мод ( = 514,5 нм, = 150 пс, < > = 700 мВт). Резонатор лазера на красителе содержал трехступенчатый двулучепреломляющий фильтр для селекции и перестройки спектра генерации. С учетом чрезвычайно жестких требований к согласованию оптической длиШ резонаторов обоих лазеров процедура получения генерации в гибридном лазере была более сложной, чем в предьщущих случаях, и состояла из сл цующих этапов  [c.199]


Впервые в аргоновом лазере активная синхронизация мод была реализована в работах [4.7] и [4.8] с помощью амплитудных модуляторов, а в работе [4.9] — с помощью фазового модулятора. Этот тип лазеров, так же как и криптоновые лазеры, в последнее время нашел важное применение в качестве источника импульсов для синхронной накачки лазеров на красителях, что будет рассмотрено в гл. 5. В настоящее время лазеры на ионах благородных газов применяются во многих лабораториях и в промышленном производстве. При этом часто используются упомянутые в п. 2.4.2 лазеры промышленного изготовления, в которые встраиваются соответствующие модуляторы. В п. 2.4.2 были рассмотрены лазеры на ионах благородных газов. Здесь мы кратко рассмотрим особенности таких лазеров при активной синхронизации мод. Пример устройства резонатора аргонового лазера с активной синхронизацией мод приведен на рис. 4.5 (по [4.10]). Синхронизация мод аргонового лазера типа ILA 120, изготовленного на предприятии VEB arl Zeiss Jena (3), осуществлялась с помощью модулятора (1), имевшего форму призмы. Модулятор, работавший в режиме стоячей волны, был изготовлен из плавленого кварца 1) и снабжен пьезоэлектрическим датчиком (2). Благодаря своей призматической форме модулятор одновременно осуществлял селекцию длин волн в резонаторе. Окна модулятора были скошены под углом Брюстера. Это сводило потери к минимуму и исключало возбуждение субгармоник. Модулятор снабжался терморегулятором с электронной регулировкой, позволявшей регулировать и стабилизировать температуру модулятора. Это  [c.146]

Для некоторых применений необходимы еще большие мощности, чем достигаемые с помощью селектора импульсов. Мощности порядка гигаватт нужны, например, для исследования нелинейных оптических эффектов высоких порядков, а также для эффективного преобразования частоты излучения (см. разд. 8.8). На рис. 5.17 показана схема усилительной лазерной установки, примененной Ротманом и др. для усиления импульсов, генерируемых лазерами на красителе с синхронной накачкой [5.30]. Усиление осуществляется в четырех расположенных последовательно кюветах с красителем, накачка которых производится второй гармоникой излучения ( i = 0,53 мкм) лазера на АИГ Nd с модуляцией добротности. При этом лазер на красителе не содержит селектора импульсов, а их селекция для снижения частоты следования осуществляется в процессе усиления, периодичность которого задается лазером на АИГ Nd, работающим с тактовой частотой около 10 Гц. Длительность импульсов лазера на АИГ Nd с модуляцией добротности равна примерно 10 НС, что в зависимости от случайного соотношения фаз позволяет усиливать один или два импульса лазера на красителе без специальной синхронизации с аргоновым лазе-  [c.184]

В лазерной технике широкое применение получили внутри-резонаторные ИПФ брюстеровского типа, предназначенные для селекции, стабилизации и перестройки частоты генерации лазерного излучения. В таких фильтрах перестройка полосы пропускания (смещения по спектру) осуществляется синхронным поворотом кристаллических пластин вокруг нормали к их поверхностям. При этом все пластины установлены под углом Брюстера к падающему излучению.  [c.470]

Высокая селективность флуоресцентного лазерного спектрального анализа связана с возможностью осуществления селекции по нескольким каналам по частоте возбуждения, по частоте излучения, по кинетике излучения. Ряд новых методов и схем повышения избирательности флуоресцентного анализа рассмотрен в [14]. Особенно перспективными представляются методы, осуществляющие одновременную селекцию по спектрам поглощения и испускания— метод синхронных спектров и анализ получаемых данных с помощью матрицы возбуждение—излучение , а также удобное при проведении локальных измерений низкотемпературное приготовление образцов в условиях матричной изоляции системы Шпольского, сверхзвуковая струя, матрицы инертных газов [23, 24]. Перспективность применения методов лазерной флуоресценции для исследования газовых сред детально обсуждалась и подчеркивалась в [1]. Примером эффективности использования флуоресцентных методов для дистанционного определения параметров атмосферы может служить, предложенная в [21] методика детектирования радикала ОН и определения профиля температуры по отношению двух сигналов флуоресценции. Один из этих сигналов регистрируется при возбуждении с уровня Г=Ъ/2 ( 1=282,06 нм ) второй — с уровня =11/2 (А.2 = 282,67 нм). При измерении их отношения возможно определение температуры в интервале 225... 280 К с погрешностью менее 10 %, определяемой погрешностью измерения отношения сигналов на и А.2. По флуоресценции радикала ОН возможно измерение давления в диапазоне 25... 250 Па (на высотах 40... 55 км) по отношению сигналов флуоресценции при возбуждении в полосах (1.1) и (0.0).  [c.151]


Селекция. Системы связи двух удаленных элементов при увеличении длины линии связи приходится делать менее мощными и передавать через них лишь слабые воздействия на приборы, питаемые от местных источников энергии. На практике в большинстве случаев можно обойтись передачей лишь весьма немногих движений или положений от задающего элемента к объекту управления. Если объект соответствующим образом подготовлен и управление им упрощено путем передачи части функций управления местным автоматич. приспособлениям, то достаточно для осуществления связи передать небольшое количество положений и, выбрав одно из них, направить в нуйгное русло энергию местных источников. Этот отбор из общего числа одного определенного русла (положения) и направления в него энергии принято называть селекцией , а приборы, производящие отбор,— селекторами . При знкчи-тельных расстояниях приходится отказываться не только от совместной передачи движений и усилий, но и самодвижение упрощать и трансформировать в движение специальных приборов (синхронных двигателей, селекторов), воздействуя на объект путем тевращения перемещения частей этих приборов в движение подчиненного (ведомого) элемента. При передаче происходит как бы отделение кинематич.  [c.378]

Для этого используют потенциометрический датчик, механически связанный с преобразователем, компенсационные токосъемники индуктивного типа и другие устройства. Уменьшение влияния акустических помех на результаты контроля осуществляется путем перемещения стробирующего импульса синхронно с возвратно-поступательным движением преобразователя, что обеспечивает временную селекцию эхо-сигналов только из заданной зоны, равной ширине сварного соединения. В качестве датчика положения преобразователя можно использовать линии задержки различного типа.  [c.216]


Смотреть страницы где упоминается термин Селекция синхронная : [c.110]    [c.378]    [c.381]    [c.382]   
Техническая энциклопедия том 22 (1933) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте