Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изотопический эффект в сверхпроводимости

Ч. Рейнольдсом с сотрудниками было установлено, что образцы сверхпроводника, изготовленные из различных изотопов одного и того же элемента, обладают различными критическими температурами. В большинстве случаев Тс обратно пропорциональна корню квадратному из массы изотопа. Изотопический эффект свидетельствует о том, что хотя кристаллическая решетка при переходе в сверхпроводящее состояние и не изменяется, она играет существенную роль в изменении свойств электронного газа. Зависимость Тс от массы изотопа показывает, что для явления сверхпроводимости важное значение имеет взаимодействие электронов с колебаниями решетки. Других причин зависимости Тс от числа нейтронов в ядре атома нет.  [c.264]


Это притяжение в принципе может привести к образованию связанного состояния двух электронов, т.е. может произойти спаривание электронов. Пара электронов обладает целочисленным спином и, следовательно, может испытывать Бозе-конден-сацию. Бозе-конденсат из спаренных электронов составляет сверхтекучую компоненту электронной жидкости. Другими словами, спаривание электронов является результатом электрон-фононного взаимодействия. Идея о спаривании электронов и образовании пар электронов ( куперовских пар ) была выдвинута Купером в 1956 г., а микроскопическая теория сверхпроводимости, основанная на идее Бозе-конденсации куперовских пар, была разработана в 1957 г. Бардиным, Купером и Шри( )фером (теория БКШ). Следует отметить, что сама по себе идея о решают,ей роли электрон-фо-нонного взаимодействия для образования сверхпроводящего состояния была известна за несколько лет до этих работ. Было отмечено, что хорошие проводники типа щелочных и благородных металлов никогда не бывают сверхпроводниками, а такие плохие проводники, как свинец, ртуть, олово, цинк, ниобий, становятся сверх-проводимыми. О прямой связи сверхпроводимости с колебаниями решетки свидетельствует также изотопический эффект  [c.372]

В работах 1987 г. были установлены важные экспериментальные факты высокотемпературная сверхпроводимость свойственна материалам с содержанием меди она обусловлена спаренными носителями зарядов (дырками) она очень чувствительна к содержанию кислорода в материалах и не допускает замещения меди другим элементом исследования изотопического эффекта ставят под вопрос фо-нонный механизм спаривания.  [c.379]

Изотопический эффект в сверхпроводимости 332  [c.414]

Прямое указание на роль движения ионов при возникновении сверхпроводимости дает изотопический эффект. Критические температуры отличаются у разных изотопов данного металлического элемента, причем часто (но не всегда) они меняются обратно пропорционально корню квадратному из массы иона. Наличие какой-то зависимости от массы иона показывает, что ионы не могут играть чисто статическую роль, а важна их динамика.  [c.353]

Притяжение между электронами. Из приведенных выше свойств сверхпроводников следует, что сверхпроводимость связана с какихм-то изменением в поведении электронов проводимости. При этом кристаллическая решетка активно участвует в создании сверхпроводящего состояния (изотопический эффект ).  [c.267]

Иа участие фононов в возникновении сверхпроводимости указывает изотопический эффект. Данные табл. 7.4 также свидетельствуют о связи сверхпроводимости с электрон-фононным взаимодействием. Чем сильнее в нормальном металле электрон-фонон-ное взаимодействие, тем меньше его проводимость. Так, например, свинец является плохим проводником, но в то же время из-за сильного электрон-фононного взаимодействия он обладает высокой (для чистых металлов) критической температурой. Благородные металлы являются прекрасными проводниками. У них слабое элек-трон-фононное взаимодействие. Они не переходят в сверхпроводящее состояние даже при самых низких температурах, достивнутых в настоящее время.  [c.268]


Другой важный вопрос относится к природе взаимодействий, обусловливающих переход в сверхпроводящее состояние и термодинамические свойства. Изотонический эффект (см. гл. VIII) весьма убедительно доказывает, что сверхпроводимость возникает в результате взаимодействия между электронами и колебаниями решетки теории, основанные на этой идее, были независимо предложены Фрелихом [15] и автором [16]. Теория Фре-лиха, развитая до открытия изотопического эффекта, дает соотношение между критической температурой Г,,р. и массой изотопа  [c.680]

Микроскопические теории. Теория Блоха, которая предполагает, что каждый электрон движется независимо в поле с периодическим потенциалом, обусловленным ионами и некоторой средней плотностью зарядов валентных электронов, дает хорошее качественное и в некоторых случаях количественное объяснение электрических свойств нормальных металлов, но оказывается не в состоянии объяснить сверхпроводимость. В большинстве попыток дать микроскопическую теорию сверхпроводимости учитывались взаимодействия, не входящие в теорию Блоха, а именно корреляция между положениями электронов, обусловленная кулоновским взаимодействием, магнитные взаимодействия между электронами и взаимодействия между электронами и фонопами. Хотя все эти взаимодействия, несомненно, должны учитываться полной Teopneii, изотопический эффект свидетельствует  [c.752]

Еще не зная об изотопическом эффекте, Фрелих [15] предложил теорию сверхпроводимости, основанную на электронно-фонопном взаимодействии. Хотя такое взаимодействие уже давно использовалось для объяснения теплового рассеяния электронов и тем самым сопротивления нормальных металлов, однако отчетливого иредставления о том, что оно дает вклад в эне])  [c.754]

Всякая теория сверхпроводимости должна объяснять пять основных экспериментальных фактов 1) фазовый переход второго рода при Т Тс, 2) s ехр — T IT) (более точные данные указывают на то, что эта зависимость носит именно экспоненциальный, а не степенной характер) 3) эффект Мейсснера 4) нулевое сопротивление 5) щеМ — масса атома (так называемый изотопический эффект).  [c.136]

До 1957 г. не было теории, которая могла бы объяснить все эти факты. В области эксперимента сдвиг произошел, когда был открыт изотопический эффект, который дает прямое указание на связь явления сверхпроводимости с фононами. Фрёлих в своей ранней работе предположил, что это явление связано с собственной энергией электрона, обусловленной его взаимодействием с фонон-ным полем. Когда эта собственная энергия (выражающаяся череэ диагональные матричные элементы) была вычислена, то она оказалась порядка N Ef) (Ьсо) [со — частота фонона )], что значительно превосходит характерную для сверхпроводимости энергию N Ef) ksT y. Бардин, Купер и Шриффер 155)разработали специальную теорию (теория БКШ), в которой они показали, что взаимодействие, ответственное за сверхпроводимость, обусловлена недиагональными матричными элементами и приводит к образованию коллективного состояния.  [c.136]

Сначала мы сосредоточим внимание на микроскопической теории сверхпроводимости, следуя при этом работе Бардина, Купера и Шриффера [14]. Теперь хорошо известно, что сверхпроводящее состояние возникает вследствие взаимодействия электронов с колебаниями кристаллической решетки металлов. Эго, однако, не следовало с очевидностью из ранних экспериментов по сверхпроводимости. Сверхпроводящее состояние впервые было обнаружено еще в 1911 г., но лишь в 1950 г. Фрейлих обратил внимание на то, что здесь замешано электрон-фононное взаимодействие. Примерно в то же время экспериментально был найден изотопический эффект, состоящий в зависимости температуры перехода в сверхпроводящее состояние от изотопической массы ядер металла, что подтвердило высказанные Фрейлихом соображения. Ранние попытки Бардина и Фрейлиха получить сверхпроводимость на основе этого взаимодействия не были успешными. Сверхпроводящее состояние они пытались получить по теории возмущений, исходя из нормального основного состояния металла. Теперь стало ясно, что получить сверхпроводимость таким путем невозможно.  [c.556]


Сверхобмен II 296, 297 Сверхпроводимость II 340—369 бесш елевая II 341 (с) вихревые линии II 347—348 длина когерентности II 352 жесткие сверхпроводники II 348 идеальный диамагнетизм II 341 изотопический эффект II 359 (с) и затухание ультразвука II 350, 351 и идеальная проводимость II 345, 352 и инфракрасное поглощение II 350 и поглощение высокочастотного излучения II 349, 350 и триплетное спаривание II 356 (с) квантование потока II 348 (с), 363, 364 концентрация сверхпроводящих электронов II 351 критическая температура II 342, 343 критический ток II 344  [c.409]


Смотреть страницы где упоминается термин Изотопический эффект в сверхпроводимости : [c.679]    [c.682]    [c.372]    [c.332]    [c.438]   
Теория твёрдого тела (1980) -- [ c.332 ]



ПОИСК



Сверхпроводимость

Эффект изотопический



© 2025 Mash-xxl.info Реклама на сайте