Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Облет Сатурна

Рис. 154. Возвращение на Землю после облета Сатурна и Юпитера [4.73] 1 — старт 16 декабря 1981 г., 2 — пролет Сатурна 23 января 1986 г., 3 — пролет 1бр Зе Рис. 154. Возвращение на Землю после облета Сатурна и Юпитера [4.73] 1 — старт 16 декабря 1981 г., 2 — пролет Сатурна 23 января 1986 г., 3 — пролет 1бр Зе

Маневр вблизи Солнца после облета Сатурна и Юпитера  [c.468]

Имеется в виду активный облет Сатурна, после которого космический аппарат, начав совершать обратное обращение, направляется навстречу Юпитеру. В результате планетоцентрическая скорость увеличивается настолько, что из пертурбационного ма-  [c.468]

Рис. 3. Расположение планет вдоль траектории облета Юпитера, Сатурна, Урана и Нептуна (запуск в 1979 г.) Рис. 3. Расположение планет вдоль траектории <a href="/info/365181">облета Юпитера</a>, Сатурна, Урана и Нептуна (запуск в 1979 г.)
Облет планеты как способ увеличения гелиоцентрической скорости [60, 136]. Поля тяготения массивных планет Юпитера и Сатурна можно использовать для разгона аппарата при полете к удаленным планетам или для отбрасывания к центру Солнечной системы.  [c.160]

Космический аппарат направляется на эллиптическую орбиту с афелием, расположенным где-то за Марсом, в поясе астероидов (рис. 152). В афелии он получает такой тормозной импульс от бортового двигателя, чтобы встретить Землю в точке Л или и разгоняется Землей, облетая ее с дневной стороны в точке А или с ночной в точке В (как можно ближе к поверхности). Таким образом может быть достигнут Сатурн, несмотря на то, что суммарная характеристическая скорость будет меньше начальной скорости, нужной для прямого полета к Юпитеру, и даже Уран [4.701. Правда, полет от Земли до Земли продолжается 2—3 года [4.68, 4.691, но, в отличие от предыдущего случая, он может начаться, как и прямой полет, один раз в год.  [c.406]

Было показано [4.71], что при начальной характеристической скорости 16,8 км/с (учитывающей потери, принимаемые за 1,22 км/с) облет Юпитера на должном расстоянии от его поверхности обеспечивает попадание на Солнце. При такой скорости можно было бы достичь Сатурна. Прямой путь к Солнцу потребовал бы, как мы знаем, четвертой космической скорости или, как минимум, начальной скорости 29,151 км/с у поверхности Земли (без учета потерь).  [c.411]

Титан, находяш.ийся от Сатурна на среднем расстоянии 20,22 радиуса планеты (1 222 ООО км, период обращения 15,945 сут), может быть эффективно использован для пертурбационного маневра. Искусственный спутник Сатурна (ИСС) может быть направлен к Титану с помощью небольшого импульса в апоцентре большой эллиптической орбиты, чтобы затем с помощью активного маневра у Титана уменьшить период обращения и еще сильнее уменьшить его после нескольких облетов. Утверждается, что при очень точном соблюдении условий подлета к Титану, делается реальным перевод космического аппарата с пролетной траектории на орбиту ИСС без какой-либо затраты топлива (кроме как на предварительную коррекцию). Для этого должно быть обеспечено точное время подлета к Титану (можно ошибиться, но именно на 16 сут) [4.681.  [c.417]


Траектория на рис. 165 типична для облета Марса продолжительностью порядка 700 сут (менее 2 лет), соответствующего облетам, рассмотренным в 7 гл. 16 [4.8]. Возможно, однако, сокращение продолжительности экспедиции до 400—450 сут, если сообщить кораблю ракетный импульс вблизи Марса. Но при этом возрастают энергетические затраты на единицу полезной нагрузки и сильно увеличивается скорость входа в атмосферу Земли она равна 20,8 км/с в относительно неблагоприятный сезон 1980 г. и 17,4 км/с в 1986 г. Но ее можно уменьшить до 12,2 км/с в 1980 г., если затормозить корабль с помощью поля тяготения Венеры. Для этого корабль должен на пути к Земле пассивно пройти через сферу действия Венеры и выйти на орбиту с перигелием, лежащим внутри орбиты Венеры. Неудобство такого облета. в том, что в конструкции корабля приходится учитывать близость к Солнцу при возвращении. Начальный вес космического корабля, активно облетающего Марс, равен на орбите 463 т в неблагоприятных условиях 1980 г. и 290 т в благоприятных условиях 1986 г. Для монтажа нужны 2—3 модифицированные ракеты Сатурн-5 [4.102].  [c.447]

В последние годы облет планеты применялся для такого изменения траектории аппарата, чтобы, двигаясь по новой траектории, аппарат мог достичь какой-либо другой планеты. Например, облет Маринером-10 Венеры позволил ему совершить три последующих облета Меркурия Пионер-11 после облета в декабре 1974 г. Юпитера перешел на траекторию движения к Сатурну. В этом разделе будет рассмотрено использование сближения с планетой для изменения гелиоцентрической скорости зонда.  [c.377]

Земля — Сатурн — Юпитер — 3 е м л я [4.73]. Благоприятные сезоны, разделенные синодическим периодом Сатурна (378 сут), существуют с 1979 по 1984 и с 1997 по 1999 гг. Все траектории, кроме соответствующей старту в октябре 1979 г. с облетом Сатурна внутри кольца, требуют энергии запуска менее 130 км7с . Продолжительности полетов максимальная (старт 27 декабря 1982 г.) — 4303,9 сут (около 12 лет), минимальная (старт 14 июня 1997 г., пролет внутри кольца) — 3831,4 сут (10,5 года). Показанная на рис. 154 траектория соответствует энергии запуска 125,4 км7с (1 0 =15,83 км/с), пролету Сатурна на расстоянии 3,25 и Юпитера на расстоянии 1,38 радиуса соответствующей планеты от ее центра.  [c.408]

Комета Галлея, имеющая период обращения 76,029 года, эксцентриситет орбиты 0,967, перигелийное расстояние 0,587 а. е. и наклонение 162,2Г (точность этих значений не гарантируется) [4.П, в настоящее время возвращается из своего афелия, находящегося за орбитой Нептуна. Очевидно, описанная операция встречи должна быть начата загодя, а так как комета Галлея пройдет со скоростью 54,5 км/с свой перигелий 8 января 1986 г., то момент для старта, как это совершенно ясно, упущен. И действительно, чтобы использовать облет Сатурна старт должен был состояться в 1973 или 1974 гг., а при облете Юпитера — в 1977 или 1978 гг.  [c.436]

Результаiь исследования чувствительности требуемой начальной скорости показали, что наилучшей датой запуска космического аппарата к Сатурну с попутным облетом Юпитера является 1979 г. и что запуски к Урану и Нептуну с облетом Юпитера также лучше всего осуш,еств-лять в 1979 г. Многие из этих траекторий после пролета планеты назначения иногда выходят за пределы солнечной системы. Оптимальная возможность запуска аппарата к Плутону с облетом Юпитера наступает несколько раньше — в  [c.19]

В работе [13] Ниехофф исследовал возможность использования гравитационного поля Юпитера для доставки межпланетных зондов к Сатурну. Эта работа вновь подтвердила вывод о целесообразности запуска таких зондов в конце 70-х годов. Кроме того, Ниехофф "изучал перспективы запусков зондов для исследования Солнца с использованием гравитационных полей планет. Он показал, что таким полетам свойственна большая продолжительность (до трех лет), но что при наличии обычных двигательных установок использование облета Юпитера является, по-видимому, единственной возможностью осуществить пролет зонда вблизи Солнца на расстоянии от него не более 0,1 а. е, Ниехофф также доказал, что идеальные требуемые приращения скорости при использовании гравитационного поля Юпитера являются почти одинаковыми -как для пролета на расстоянии в пределах 0,1 а. е,, так и для попадания зонда в Солнце.  [c.20]

Как видно из табл. 10 в 6 гл. 13, планеты группы Юпитера Щлутон не в счет) обещают наибольший эффект при их использовании для пертурбационных маневров. В особенности это касается Юпитера, во вторую очередь — Сатурна. Кольцо Сатурна в принципе не препятствует близкому (наиболее эффективному) облету его, так как космический корабль может проскользнуть в щель шириной 12 ООО км между внутренним краем кольца и плотными слоями атмосферы предполагается, что эта щель свободна от твердых частиц, которые погибли, заторможенные разреженной атмосферой. Но такой маневр требует весьма большой точности навигации. Что касается наружного края кольца, то нет уверенности, что он не находится дальше известного сейчас края (радиуса более 2,3 экваториального радиуса Сатурна).  [c.407]


Было разработано несколько вариантов встречи с кометой Галлея при использовании пертурбационного маневра во время пролета Юпитера или Сатурна. Идея такой операции проста. Космический аппарат, облетев планету (возможен, в частности, и активный маневр), выходит на эллиптическую гелиоцентрическую орбиту с афелием, лежащим за орбитой Юпитера или Сатурна, причем плоскость орбиты совпадает с плоскостью орбиты кометы Галлея. Расчет тот, что, приближаясь к Солнцу, аппарат наберет большую скорость, так что, когда его нашнит комета Галлея (где-то за орбитой Марса), разница скоростей будет не столь велика. После выравнивания скоростей с помощью разгонного импульса оба тела дальше движутся бок о бок. Суммарная характеристическая скорость при активном облете Юпитера равна 28 км/с и требует использования ракеты класса Сатурн-5 при очень малой полезной нагрузке [4.961.  [c.436]

Примеры последовательного облета небесных тел. Обсудим наиболее интересные примеры реализации межпланетных траекторий с последовательным облетом нескольких небесных тел. 20 августа 1977 года был запущен американский КА Вояджер-2 но маршруту Земля — Юпитер — Сатурн — Уран — Нептун. Такую траекторию часто называют Гранд тур (Grand Tour— Великое путешествие ). Основные цели запуска включали исследование атмосфер Юпитера и Сатурна, Большого красного пятна Юпитера, колец Сатурна, гравитационных нолей Юпитера и Сатурна, некоторых характеристик их спутников, а также планетной системы Урана [82]. Благоприятное расположение планет для реализации подобной траектории повторится только в 2154 году.  [c.321]

Ракета Сатурн-У выполнила поставленные перед ней задачи программа Аполлон была успешно завершена. На Луне побывали 12 человек, а ее облет соверишлн 27 астронавтов.  [c.89]

В июле 1960 года для новой программы было утверждено Название Аполлон , а 13 сентября НАСА провело первую конференцию, посвященную проекту космического корабля для облета Луны. На этой конференции представители авиакосмической промышленности получили техническое задание на разработку такого корабля. Были вьщвинуты следую-пще требования габариты соответствуют последней ступени ракеты-носителя Сатурн С-2 масса — не больше 6,8 тонны продолжительность работы системы жизнеобеспечения — не менее 14 дней для экипажа из трех человек.  [c.283]

В марте 1964 года вновь был поднят вопрос о том, что если в силу различных причин график программы Аполлон будет сорван и возникнет угроза отставания от русских в лунной гонке , можно будет попытаться отправить один из кораблей Джемини на ракете-носителе Сатурн 1Б ( Saturn IB ) в облет Луны. Однако Вернер фон Браун и другие руководители программы Аполлон не были заинтересованы в проектах, подрывающих веру в правильность выбранной схемы. Нод их давлением в июне  [c.290]


Смотреть страницы где упоминается термин Облет Сатурна : [c.423]    [c.18]    [c.19]    [c.32]   
Механика космического полета в элементарном изложении (1980) -- [ c.408 , c.410 , c.468 ]



ПОИСК



Сатурн



© 2025 Mash-xxl.info Реклама на сайте