Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрица стохастическая положительная

J = О,..., iV — 1. Такие матрицы называются стохастическими. Подобно ситуации с 0—1-матрицами (см. определение 1.9.6), мы будем называть стохастическую матрицу П транзитивной, если для некоторого т все элементы матрицы П положительны. Следующий факт — простое следствие теоремы Перрона — Фробениуса 1.9.11 и некоторых соображений, использовавшихся в ее доказательстве.  [c.167]

При исследовании устойчивости стохастических систем используется, в частности, метод функций Ляпунова. В этом случае важную роль играет введенный ранее оператор L, имеющий смысл полной производной по времени в силу динамических уравнений. Условия устойчивости по вероятности в смысле указанного выше определения сводятся к существованию положительно определенной функции V такой, что Z, F < 0. Ввиду известных трудностей применения этого метода, связанных с нахождением функции V, часто пользуются упрощениями в постановке задач. При этом можно рассматривать малые случайные возмущения, для которых малы вероятности больших флуктуаций. Условия устойчивости для задач такого рода являются более простыми и (при ограниченности первых двух моментов воздействий) сводятся к ограничению снизу спектра матрицы невозмущенной системы некоторой простой функцией этих моментов. Можно также рассматривать устойчивость по линейному приближению. Хотя полученные в та-  [c.348]


Так как произведение стохастических матриц есть стохастическая матрица, а предел степеней стохастической матрицы, элементы которой положительны, есть матрица с одинаковыми столбцами, умножение этой предельной матрицы справа на любую стохастическую матрицу оставляет ее неизменной. В результате для контура получим, что в пределе по различным последовательностям степеней W влияние каждой компоненты на каждую другую компоненту (включая саму эту компоненту) описывается одним и тем же выражением, т. е. ее предельным приоритетом по отношению к соседней компоненте.  [c.225]

Приведенные ниже данные дополняют результаты статьи. Они позволяют конструировать функционалы сложности и назначать краевые условия так, чтобы определяемые на основе принципа сложности элементы матрицы импульсных переходных функций могли иметь специальные свойства. Этому вопросу посвящен п- I приложения, в котором также поясняется характер упомянутых специальных свойств. В п. П приложения описан проекционный метод решения операторного уравнения с симметричным положительно определенным оператором — метод Ритца. Этот метод также можно считать методом построения минимизирующей последовательности для определенного типа квадратичного функционала, которая сходится в метрике гильбертова пространства к точному решению. Подобного типа операторные уравнения и квадратичные функционалы возникают при использовании принципа минимальной или - ограниченной сложности в задачах стохастической оптимизации. Обоснованием этого в частности, являются результаты данной статьи.  [c.103]

Заметим, что если все элементы W положительны, то мы имеем примитивную матрицу и справедлива теорема о стохастических примитивных матрицах, существуют и ПОП и ПАП. Они совпадают и получаются в результате решения задачи о собственном значении Ww=-w. В действительности w — любой столбец limVF. Такой же результат справделив, если W — примитивная матрица.  [c.228]


Введение в современную теорию динамических систем Ч.1 (1999) -- [ c.193 ]



ПОИСК



I стохастические

Матрица стохастическая



© 2025 Mash-xxl.info Реклама на сайте