Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрический заряд единица измерения

Новым государственным стандартом установлена также единица измерений экспозиционной дозы рентгеновского и гамма-излучений. Под экспозиционной дозой этих излучений понимается отнесенная к некоторой массе воздуха А.пг сумма электрических зарядов всех ионов одного знака, образо-  [c.99]

Способность элемента системы накапливать тепло характеризуется произведением массы элемента на его удельную теплоемкость и обычно измеряется в килокалориях, деленных на градус Цельсия. Способность элемента накапливать массу может быть выражена при помощи различных единиц измерения, например в кубических метрах жидкости на метр высоты резервуара и т. д. Подобные емкости аналогичны электрическим емкостям, однако следует подчеркнуть, что их величина определяется скоростью измерения энергии или массы [см. уравнение (3-1)], в то время как величина электрической емкости обычно определяется отношением величины полного заряда к напряжению. Величина электрической емкости обычно не зависит от напряжения. Величины емкостей, аккумулирующих тепло либо массу, часто зависят от 0 и не могут быть подсчитаны по величине отношения Q/Q.  [c.37]


Емкостью называется свойство проводников накапливать и удерживать электрический заряд. Емкость проводников обозначается буквой С. Единицей измерения емкости принята фарада, обозначаемая буквами Ф или Р мкф и< — миллионная часть фарады.  [c.35]

Если единица измерения заряда е — кулон, концентрация электронов п 1м и подвижность Ь м в сек, то удельная электрическая проводимость у будет в um M Эти формулы приме-  [c.38]

Для характеристики рентгеновского и гамма-излучения принято также понятие экспозиционной дозы, как количественная характеристика, основанная на ионизирующем действии этих излучений в сухом атмосферном воздухе, а характеристика выражается отношением суммарного электрического заряда ионов одного знака, образованного излучением, поглощенным в воздухе, к массе этого воздуха. За единицу измерения экспозиционной дозы принят кулон на килограмм (Кл/кг). Допускается также применение внесистемной единицы рентген 1Р = 2,57976-10" Кл/кг. Экспозиционная доза в 1Р создает при нормальных условиях в 1 см ионы, несущие одну электростатическую единицу количества электричества каждого знака (2,08-10 пар ионов). Поглощенная энергия в воздухе, соответствующая экспозиционной дозе 1Р, будет равна 0,88-10 Дж/кг.  [c.80]

Для характеристики электрической цепи одной из основных величин является напряжение и — скалярная величина, равная работе, которая производится при перемещении единицы положительного электричества (одного кулона) между двумя точками цепи и = А/д. Единицей измерения напряжения служит вольт. Это напряжение между двумя точками цепи, когда при перемещении заряда в один кулон совершается работа в один джоуль.  [c.288]

Тенденция капиллярной силы всегда направлена в сторону восстановления сферической фигуры равновесия. Электризуя каплю, мы можем ввести силу, действующую в противоположном направлении. Можно показать 2), что если Я есть электрический заряд, измеренный в электростатических единицах, то формула, соответствующая (9), будет иметь вид  [c.362]

Основные понятия и единицы измерений. Электрический ток представляет собой перемещение по проводнику электрических зарядов. При протекании тока через металлический проводник носителями заряда являются электроны. Электрон представляет собой первичное, предельно малое количество электричества с отрицательным зарядом. За единицу количества электричества или электрического заряда в практической системе единиц принят 1 кулон, соответствующий по заряду 6,3.10 электронов.  [c.179]


Свойство проводника, которое характеризует его способность хранить электрический заряд, называют ёмкостью и обозначают буквой С, единица измерения фарада (Ф). Единица измерения фарада названа в честь английского учёного Майкла Фарадея, который в 1821 году сконструировал первый электрический мотор.  [c.335]

При измерении электрического заряда Q в кулонах поток электрического смещения фд измеряется в тех же единицах.  [c.69]

Коэфф. пропорциональности к зависит от выбора системы ед. измерений (в Гаусса системе единиц к=, в СИ й=1/4 Я8о, Ео— электрическая постоянная). Сила Р направлена по прямой, соединяющей заряды, и соответствует притяжению для разноимённых зарядов и отталкиванию для одноимённых. Если взаимодействующие заряды находятся в однородном диэлектрике с диэлектрической проницаемостью 8, то сила вз-ствия уменьшается в е раз  [c.334]

История физики показывает, что точные опыты, измерения приводят к открытию новых физических явлений, новых физических постоянных. Так, эксперименты Дж. Томсона (1897) по отклонению катодных лучей в электрическом и магнитном полях привели к открытию им первой элементарной частицы— элскгро-на. В физике появились две новые фундаментальные постоянные—элементарный электрический заряд е и масса электрона Эти же данные разру1пили бытовавшее еще со времен Древней Греции представление о том, что атомы представляют собой мельчайшие, не делимые далее структурные единицы материи. Постоянная Планка h обязана своим рождением точным измере-  [c.29]

Принципиально так же можно измерять силы, обусловленные действием полей (гравитационного, электрического и магнитного). Например, общеизвестный метод взвешивания тел на пружинных весах позволяет измерить притяжения этих тел Землей (правда, только приближенно, так как Земля, на которой покоится тело при взвешивании, движется относительйо выбранной неподвижной системы координат и это несколько искажает результаты измерений). Точно так же при помощи динамометров можно измерять силы взаимодействия между неподвижными электрическими зарядами, прикрепив к двум заряженным телам динамометры и подобрав растяжение динамометров так, чтобы тела покоились. Эти же измерения позволяют определять величину зарядов (по силам взаимодействия зарядов) и установить единицу электрического заряда в системе GSE. Наконец, при помощи динамометров можно измерять силы взаимодействия между электрическими токами, текущими в жестких отрезках проводов. Для этого нужно прикрепить динамометры к жестким отрезкам проводов  [c.76]

Если в пространстве за анодом, на пути электронного луча, существует электрическое или магнитное поле, или и то и другое одновременно, то на электроны луча будет действовать сила Лорентца. Зная напряженности этих полей — электрического Е и магнитного Н — и скорость электронов, мы можем определить силу Лорентца, действующую на единицу заряда. Для того чтобы определить силу Лорентца, действующую на электрон, нужно знать величину его заряда. Принципиально заряд электрона может быть измерен, как и всякий электрический заряд, при помощи динамометров, как описано выше. Однако вследствие малости заряда электрона приходится применять специальные методы измерения, описывать которые здесь было бы нецелесообразно. Измеренный с помощью этих методов заряд электрона оказался равным 4,8-Ю GSE. Вместе с тем опытные факты говорят о том, что эта величина заряда электрона при всех условиях остается неизменной.  [c.87]

Из многочисленных экспериментальных исследований известно, что средний диаметр атома равен 10 см, масса и положительный электрический заряд сосредоточены в ядре диаметром около 10" см. Обычный атом электрически нейтралей, каждому положительному электрическому заряду, заключенному в протоне, находящемся в ядре, соответствует отрицательный заряд—электрон, находящийся вне ядра. Химические свойства атома определяются числом электронов и, следовательно, протонов. При химической реакции число электронов, связанных с атомом, обычно может меняться если же изменится число протонов (и это может иметь место ), то должны измениться и свойства. Число протонов ядра равно его атомному номеру. Другой физической характеристикой ядра является его масса. Для измерения массы принята система единиц, в которой масса атома углерода равна точно 12 единицам. Атомная единица массы (а. е. м.) определяется как V12 массы изотопа углерода, 1 а. е. м. = 1,6598-10 2 кг, В этой системе масса атома водорода, состоящего из одного протона и одного электрона, очень близка к 1 а. е. м. Масса электрона равна V2000 массы протона, и поэтому его масса в атомных единицах массы равна 0. Протоны и электроны еще не составляют массу ядра. Большая ее часть  [c.159]


Выше ( 1.3) говорилось об условности выбора величин, которые мы Принимаем за основные. Можно при этом, исходя из метрологических соображений точности и воспроизводимости измерений, считать основными одни велшшны, а при построении систем единиц — другие. Эта идея впервые была высказана проф. П.Л. Каланта-ровым, который для описания электрических и электромагнитных явлений предложил систему, в которой основными величинами бьши длина, время, электрический заряд и магнитный поток.  [c.51]

Система СГС охватьшала механические, электрические и магнитные измерения, причем произошло ее разделение на злектростатическую (СГСЭ) и злектромагнитную (СГСМ) системы. В первой за основу принималось взаимодействие электрических зарядов, а во второй -взаимодействие магнитных масс . Впоследствии оказалось целесообразным принять такой вариант системы, в котором величины, относящиеся к электростатическим явлениям, и величины, связанные с прохождением тока (сила тока, сопротивление), измеряются электростатическими единицами, а относящиеся к магнитным явлениям — электромагнитными. Эта система получила название Симметричной, или гауссовой, системы и обозначает СГС.  [c.53]

Укажем, что для измерения электрического заряда ак-хумуляторов (неудачное, но весьма распространенное название емкость аккумуляторов ) применяется единица ампер-час 1 А-ч = 3600 Кл.  [c.213]

После открытия электрона было естественно предположить, что электролитическая единица электричества — минимальное количество электричества, переносимого в процессе электролиза, — равна заряду электрона. Исходя из такого предположения и сравнивая полученное при изучении процесса электролиза отношение электролитической единицы электрического заряда к массе атомов с измеренным значением е/ш для электрона, Томсон нришел к заключению, что электроны в тысячи раз легче атомов.  [c.15]

И о в е р X п о с т н а я плотность электрического заряда — количество электричества, приходящееся на едяннцу площади поверхности заряженного тела единица измерения к м .  [c.115]

Экспозиционная доза рентгеновского и гамма-излучений — доза излучения, при которой соп])яженная корпускулярная эмиссия на един1щу массы пли единицу объема сухого атмосферного воздуха производит в воздухе ионы, несущие электрический заряд каждого знака. Единицы измерения кулон па килограмм (к/кг) в системах СИ и М КСА п внесистемная единица рентген >).  [c.123]

Источник электрической энергии производит определенную работу по перемещению электрических зарядов в замкнутой цепи. Работа, соверщаемая источником электрической энергии при перемещении единицы положительного электричества в замкнутой электрической цепи, называется электродвижущей силой источника (ЭДС). Электродвижущая сила источника Е является причиной, поддерживающей разность электрических потенциалов (напряжение) на его зажимах. ЭДС источника вызывает электрический ток в замкнутой цепи, преодолевая ее внешнее и внутреннее сопротивление. Электродвижущая сила источника электроэнергии является одной из важнейших характеристик его. Единицей измерения ЭДС служит волы (В).  [c.4]

ФАРАДА ((/), F) — единица измерения электрической емкости и МКСА систе.ме единиц и Междуна,-родной системе единиц. 1 Ф. равна электрической емкости пролодиика, потенциал к-рого повышается па 1 в при передаче ему электрического заряда в 1 к. Размер и размерность 1 56 = (1 к) (I а), [[c.292]

Много труда было потрачено на то, чтобы установить, за счет каких взаимодействий происходит нарушение СР. Из сравнения интенсивностей процессов (7.188) и (7.189) возникает подозрение, что в них нарушается правило 1АГ = /г (см. п, 6), потому что спин каона равен половине, а в двухпионной системе, получающейся при распаде, велика доля состояния с Т = 2. Поэтому похоже, что вызывающее этот распад взаимодействие не является чисто слабым. Многие склоняются к тому, что за нарушение СР ответственны электромагнитные взаимодействия. Но и здесь есть трудность, состоящая в том, что такое нарушение привело бы к существованию электрического дипольного момента у нейтрона. Между тем тщательные измерения показали, что с точностью до 10 см (в единицах элементарного заряда) этот момент равен нулю. Так что вопрос  [c.414]

Сопротивление (/ , г) — свойство тел препятствовать движению зарядов под действием электрического поля. Практическая единица сопротивления — ом—есть сопротивление проводника, по которому протекает ток в а при приложении к его концам напряжения в 1 в. Сопротивлением в 1 ом обладает при О С столб ртути постоянного сечения длиной 106,3 см, имеющий массу 14,4521 г. Для измерения больших сопротивлений употребляются килоом, равный 1 ком = 10 ом, и мегом, равный 1 мгом = 10 ом.  [c.513]

Как сказано было выше, электростатика и магнитостатика излагались независимо друг от друга. За ними обычно шли законы постоянного тока, и лишь в конце появлялись магнитное действие тока (обычно в виде действия на магнитную стрелку), электромагнитная индукция и т.д. Такой порядок изложения создавал трудности для понимания существа явлений, приводил к путанице основных понятий. В особенности это проявлялось в вопросе о системах единиц. Построенные независимо друг от друга, единицы электрических и магнитных величин образовывали две группы, обе находящиеся в рамках системы СГС. Эти группы не вступали бы друг с другом в противоречие, если бы не существовало магнитного поля тока. Благодаря наличию последнего сила тока входит не только в определяющее соотношение (7.2), но и в выражения для действия тока на магнитную стрелку или для взаимодействия токов. Поскольку в этих выражениях для всех остальных величин существовали ранее установленные единицы СГС, то определялась единица силы тока, отличная от единицы, основанной на формуле (7.2), при измерении заряда электростатическими единицами. Таким образом возникли две СГС системы электрических и магнитных величин — электростатическая (СГСЭ) и электромагнитная (СГСМ), о построении которых сказано будет ниже.  [c.185]



Смотреть страницы где упоминается термин Электрический заряд единица измерения : [c.62]    [c.77]    [c.374]    [c.59]    [c.71]    [c.34]    [c.35]    [c.39]    [c.226]    [c.299]    [c.550]    [c.673]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.49 ]



ПОИСК



224 — Единицы измерени

Единицы измерения

Единицы измерения электрические

Заряд

Заряд электрический

Электрические единицы

Электрические измерения



© 2025 Mash-xxl.info Реклама на сайте