Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Натрий физические свойства жидкости

В настоящее время построено несколько реакторов, где в качестве охладителя используется или жидкий натрий, или эвтектический сплав жидких натрия и калия. Возможность использования этих и других жидких металлов стимулировала изучение физических свойств жидких металлов и сплавов. Первые результаты таких исследований были суммированы в 1950 и 1952 гг. Лионом [1, 2]. Предпринятая попытка была довольно специфической и охватывала не слишком большое число металлов и сплавов, выходящих за пределы использования в ядер-ных реакторах. Более широкая область была охвачена в 1954 г. Фростом [9], который попытался сопоставить свойства жидких металлов и сплавов с их возможной атомной структурой. Все же в большинстве случаев, чтобы представить законченную картину строения металлической жидкости, информации недоставало. За последнее десятилетие опубликовано много экспериментальных работ о жидких металлах и сплавах и теперь можно более  [c.11]


Двигаясь далее в зону еще более высоких температур, мы приходим к цезию, калию и натрию как к наиболее приемлемым рабочим жидкостям. Необходимые для расчета тепловых труб физические свойства этих теплоносителей хорошо исследованы (см. приложение 1). В области температур свыше 1400 К выбор обычно прежде всего падает на литий, однако использовалось также и серебро [3-5].  [c.83]

Рассмотрим пример из практики. Пусть требуется исследовать два течения течение жидкого натрия на участке трубопровода контура АЭС и течение крови в капиллярном сосуде. При этом заданы давление на входе, расход каждой жидкости и ее физические свойства р, ц. при заданной температуре, а также геометрические размеры  [c.96]

Рис. 7.8.8. Обобщенная зависимость коэ )фиционта теплоотдачи Р от физических свойств жидкости и скорости вдува прп барботаже (вода, водоглицериновые растворы) и кипении (вода, натрий, калий, цезий, этанол, бензол, жидкий азот и яшдкий гелий, фрсюн) в виде зависимости параметра Рис. 7.8.8. Обобщенная зависимость коэ )фиционта теплоотдачи Р от <a href="/info/27474">физических свойств жидкости</a> и скорости вдува прп барботаже (вода, водоглицериновые растворы) и кипении (вода, натрий, калий, цезий, этанол, бензол, <a href="/info/63470">жидкий азот</a> и яшдкий гелий, фрсюн) в виде зависимости параметра
Конструкция устойства для испытания по методу петли может широко изменяться по размерам и по сложности, однако все варианты конструкции могут быть разделены на два основных типа петли, в которых конвекция осуществляется с помощью нагрева петли, где конвекция происходит под действием давления. В обоих типах жидкая среда течет непрерывным сплошным потоком в петле, расположенной вертикально. Одна часть петли нагревается, в то время как другая — охлаждается для поддержания постоянного перепада температур в системе. В системе этого типа течение жидкости поддерживается за счет термической конвекции, а скорость течения зависит от отношения температур части петли с максимальным нагревом и части охлажденной петли, а также от температурного градиента и физических свойств жидкости. Схема работы такой петли, построенная на принципе температурной конвекции, показана на рис. 10.26. Этот метод был использован де Ваном и др. [234] для изучения потерь массы металла при литье на сплавах ниобия, а также для того, чтобы определить скорости перехода азота н углерода между ванадиевыми сплавами и нержавеющей сталью в жидком натрии [235]. Этот тип конвекции ограничен низкими скоростями потока (максимально 6 см/с), и поэтому там, где требуются более высокие скорости потока жидкости, следует использовать лнбо ме-  [c.586]


Сплавы Na — К i содержанием калия от 40 до 90 весовых яроцентов прл комнатной температуре иредстав-ляют подвиж1Ные серебристо-белые жидкости и по своим физическим свойствам близки к -натрию и калию.  [c.22]

Все -натрий-калиевые сплавы с содержанием калия от 40 до 90% вес. при комнатной температуре представляют собою подвижные серебристо-белые жидкости и по своим физическим свойствам близки к натрию и калию. Некоторые физические параметры оплащов имеются в [Л. 9, 51].  [c.53]

Таким образом было изучено несколько жидких,металлов, свинец [31, с. 275 32—34], олово [31, с. 237 33 34] и натрий [31, с. 227 37], а также вода [27], Литературные данные все еще значительно различаются в отношении точного толкования (интерпретации) и значения результатов, но можно сделать несколько качественных заключений. Оказывается, что в жидкости, как и в твердом теле, существуют колебания атомов, обладающие большой энергией, а распределение частоты колебаний в обоих состояниях одинаково. Жидкость имеет размытый дебаевский спектр, который постепенно становится все менее четким при нагревании. Из этого следует, что температура Дебая при плавлении изменяется лишь незначительно, что подтверждается наблюдениями, показывающими пренебрежимо малое изменение теплоемкости при плавлении большинства металлов. Предполагается также, что диффузия в жидкостях не может быть представлена ни простой моделью свободной диффузии, подобной диффузии в газе (за исключением, возможно, при очень высоких температурах жидкости), ни механизмом скачкообразной диффузии, как в твердых телах такой вывод впервые сделал Нахтриб [209]. Был предложен вариант, основанный на групповой модели диффузии в жидких металлах [27, 36] подобная модель независимо была предложена мной [332]. Глобулы или группы, как полагают, содержат около 100 атомов (см. разделы 3 и 8) и позволяют качественно интерпретировать другие физические свойства (сМ. раздел 9). Вычисленные из модели Эгельштаффа константы диффузии прекрасно совпадают с экспериментальными [27].  [c.20]

Предплавлеиие, предсказанное Борелиусом, найдено в нескольких органических материалах и нескольких тио-цианатах происходит предварительный распад структуры перед плавлением [559]. Уже говорилось об увеличении концентрации вакансий в щелочных металлах ниже точки плавления. Карпентер [562, 563J сообщает об аномальном поведении удельной теплоемкости у лития, калия и натрия в интервале температур на 50— 100 град ниже точки плавления, возможно, вызываемом образованием вакансий. Сообщается о подобной же странности в физических свойствах висмута, цинка, кадмия [565], олова, кадмия [566], магния [566, 567], индия, калия [568] и алюминия, золота и серебра [569]. Несомненно, некоторые из этих аномалий связаны с местным плавлением, вызываемым примесями [573, 574] (образование частиц жидкости в твердой фазе не представляет проблемы, так как при этом увеличивается энтропия), которые стремятся скопиться в уже отчасти разупорядо-ченных местах решетки (дислокации и скопление дефектов).  [c.159]

Обычно используемые смеси состоят из трехокиси мышьяка, едкого натра и воды в различных соотношениях в зависимости от желаемых физических свойств конечной смеси. Так, например, соответствующей комбинацией этих соединений можно получить твердую плотную смесь, чтобы ингибитор, не разрушаясь, опустился на дно скважины, не успевая при этом раствориться в окружающей жидкости. Во избежание размягчения ингибитора при высоких температурах и прилипания его к нагретым стенкам трубы при загрузке в скважину, для повышения температуростой-кости иногда едкий натр заменяют едким кали. При изготовлении гранулированного ингибитора соотношение в нем арсенита натрия и окиси мышьяка определяется их свойствами как ингибиторов арсенит натрия, растворяясь довольно быстро, дает требуемую высокую начальную концентрацию ингибитора, тогда как оставшийся остов из окиси мышьяка растворяется гораздо медленнее и поддерживает долгое время необходимую защитную концентрацию ингибитора. В качестве наполнителей могут добавляться сульфат бария, порошкообразный цинк, металлическое железо.  [c.203]

Следовательно, на процесс шликерного литья влияют плотности порошка и жидкости, их физические и технологические свойства, характер взаимодействия и другие факторы. Кроме порошка, в состав шликера входят дисперсионная среда (вода, спирты, четыреххлористый углерод и др.) и добавки (дефлокулянты), препятствующие скоплению частиц и способствующие созданию устойчивых коллоидных суспензий и улучшению условий смачивания как частиц порошка, так и стенок прессформы. В качестве дефлокулянтов используют кислоты (соляную, уксусную и др.), щелочи (МаОН, КОН, ЫН40Н и др.), альгинаты аммония или натрия,  [c.260]


Причины ингибитивных свойств пигментов. Результаты опытов Льюиса могут быть объяснены следующим образом. Если пигмент поддерживает высокое значение pH в жидкости или если он осаждает железо, то соединения закиси железа, образовавшиеся в уязвимых местах на поверхности, осаждаются в физическом контакте с металлом и стремятся таким образом задержать коррозионное воздействие позднее они обыкновенно превращаются в соединения окиси железа. Принципы, которые объясняют защиту, производимую жидкими ингибиторами, одинаково хорошо применяемы и к защите плохо растворимыми ингибитивными пигментами. Факт, что торможение коррозии зависит главным образом от выпадения осадка в физическом контакте с металлами, установлен Льюисом при микроскопическом изучении стальных образцов, которые встряхивались в растворе хлористого натрия, содержавшего хромовокислый свинец. Частицы желтого пигмента оказались прикрепленными к металлу, очевидно, они были сцементированы продуктами начавшейся коррозии. Формула хромовокислого свинца (вероятно, основного) может быть условно написана хРЬО-уСгОз. Представим, что в слабые места первичной окисной пленки впрессованы твердые частицы пигмента. В процессе коррозии образуется хлористое железо, но РЬО служит осадителем железа в виде гидрата закиси же-  [c.738]


Смотреть страницы где упоминается термин Натрий физические свойства жидкости : [c.136]    [c.213]    [c.498]    [c.285]   
Справочник по теплофизическим свойствам газов и жидкостей (1963) -- [ c.103 ]



ПОИСК



Жидкости, свойства) свойства)

Натрий

Натрий Свойства

Свойства Физические свойства

Свойства жидкостей

Свойства физические

Физические ПТЭ - Физические свойства

Физические свойства жидкостей



© 2025 Mash-xxl.info Реклама на сайте