Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Координата середины поля поля рассеяния

Координата середины поля рассеяния — расстояние от середины поля рассеяния до границы номинального размера. Обозначается буквой Д с индексом ш, около которого ставится порядковый номер звена или его условное обозначение,  [c.56]

Координата середины поля рассеяния  [c.58]

Координата середины поля рассеяния составляющего звена  [c.59]

Примечание. AQg и — верхнее и нижнее предельные отклонения поля допуска (при расчетах подставляются со своими знаками) д 9=0,5 iQ,,) — координата середины поля допуска коэффициент относительной асимметрии поля рассеяния погрешности С — коэффициент асимметрии поля допуска Kq — коэффициент относительного рассеяния погрешности в поле допуска.  [c.433]


При расчете по вероятностному методу сначала определяют координаты середины поля рассеяния E j и поле рассеяния Vj кинематической погрешности  [c.372]

Координаты середин полей рассеяния и поля рассеяния кинематической погрешности передач (угл. мин) с учетом формул (6.37), (6.38) равны  [c.378]

Координаты середин полей рассеяния и поля рассеяния мертвого хода передач (угл. мин), рассчитанного по (6.37), (6.38), имеют следующие значения  [c.378]

Координата середины поля рассеяния кинематической погрешности цепи (угл. мин) по (6.40)  [c.378]

Координата середины поля рассеяния мертвого хода цепи (угл. мин) по (6.47)  [c.379]

Определим координаты середин полей рассеяния и поля рас-сения кинематических погрешностей (угл. мин) передач по формулам (6.37), (6.38)  [c.381]

Найдем координату середины поля рассеяния кинематической погрешности (угл. мин) цепи по (6.40)  [c.381]

Так как координаты середины поля допуска До и поля рассеяния Д являются величинами, имеющими не только величину, но и направление, они подчиняются тем же закономерностям, что и номинальные размеры.  [c.250]

Для расчета номинальных размеров и координат середин полей допусков и полей рассеяния используется алгебраическое или векторное суммирование при использовании всех известных методов достижения точности.  [c.253]

Координата середины поля рассеяния— расстояние от середины поля рассеяния до границы номинального размера. Обозначается буквой Д и индексом ш, около которого ставится порядковый номер звена или его условное обозначение. Например, Д или Д и т. д. В общем случае для -звена Д (фиг. 29).  [c.60]

Наибольшая возможная величина компенсации Координата середины поля допуска составляющего эвена Координата середины поля допуска замыкающего или исходного звена Координата середины поля рассеяния составляющего звена Координата середины поля рассеяния замыкающего эвена Координата центра группирования составляющего звена  [c.64]

Из формулы (49) следует, что у партии изделий величина координаты середины поля рассеяния замыкающего звена, размерной цепи с параллельно расположенными звеньями равна разности алгебраических сумм середин координат полей рассеяния всех увеличивающих и всех уменьшающих звеньев, составляющих размерную цепь.  [c.88]


По аналогии, заменяя в формуле (49) координаты середин полей рассеяния координатами полей допусков, можно написать  [c.92]

Правильность установленных величин координат середин полей допусков и их знаков проверяется по формуле (57). Если по каким-либо соображениям встречается необходимость использовать при расчетах асимметричные законы рассеяния всех или отдельных  [c.93]

Да — координата середины поля рассеяния погрешностей замыкающего звена  [c.141]

Звено размерной цепи Переда- точное отноше- ние Номинальный размер и допуск в мм 26. Класс точности или посадка Технологическая операция Коэффи- циент относи- тельного рассеяния к. Коэффициент относительной асимметрии г Половина поля допуска в мм. ь Приведенный коэффициент относительного рассеяния Координата середины поля допуска относительно номинала в мм, ео + но 2  [c.384]

Координата середины поля рассеяния Ес. Эта координата характеризует положение середины поля рассеяния размеров V (Лг) относительно номинального размера A , Если поле рассеяния симметрично перекрывает поле допуска, Ес (Л ) = = Ео (Ai).  [c.192]

Видно, что координата центра группирования (Л ) не совпадает с координатой середины поля рассеяния Е (Л ). Для оценки этого несовпадения в количественном смысле введена четвертая характеристика.  [c.193]

Координату середины поля рассеяния замыкающего звена определим, используя формулу (10.2)  [c.221]

Формула (10.35) определяет координату середины поля рассеяния замыкающего звена для общего случая распределения размеров. Но практически она используется редко, так как в первом приближении можно принять, что размеры имеют симметричное распределение относительно номинала. Тогда а = ад = О, и формула (10.35) принимает вид (10.24).  [c.221]

Предельные отклонения замыкающего звена определяются из простых геометрических соображений (см. рис. 10.1) при условии, что координаты середины поля допуска Вод и середины поля рассеяния Еед замыкающего звена совпадают, т. е. Е д =  [c.221]

Предельные отклонения составляющих звеньев определяют при использовании зависимого звена по формулам, аналогичным формулам (10.31) и (10.32), только решение отыскивается относительно координат середины поля рассеяния размеров по зависимости (10.35).  [c.222]

После подстановки значений Ес(А ) в уравнение (9.12) получают значение координаты середины поля допуска замыкающего звена при асимметричных кривых распределения составляющих размеров. Величины предельных отклонений замыкающего размера определяют затем, используя формулы (9.7). В производственных условиях случайные погрещности размеров деталей могут распределяться не по закону Гаусса. Для определения допуска замыкающего размера при любом законе распределения в формулу (9.15) вводят коэффициент относительного рассеяния kj, т. е.  [c.208]

Для симметричной кривой рассеяния случайной величины (см. рис. 1.54) параметры кривой (координата середины поля рассеяния) и Е (координата центра группирования) совпадают, т. е.  [c.99]

Координата середины поля рассеяния -координата, определяющая положение середины поля рассеяния относительно номи-  [c.345]

Координата середины поля рассеяния замыкающего звена т-  [c.349]

Координату середины поля рассеяния выразим через коэффициенты относительного рассеяния  [c.381]

Координата середины поля рассеяния суммарной погрешности обработки  [c.54]

Поле рассеяния со как величину, в пределах которой фактически находятся все отклонения размеров, полученных в результате выполнения процесса. Поля допуска б, так же как и поле рассеяния и, могут располагаться относительно конца номинального (расчетного) размера в различных положениях. Для определения этого положения служат координаты середины поля допуска Дол и поля рассеяния Дш.4(рис. 1.152).  [c.249]


Порядок расчета величин координат середин и величин полей рассеяния замыкающего звена  [c.73]

В соответствии с этим для определения величины координаты Дщ середины поля рассеяния замыкающего звена размерной цепи служит формула  [c.87]

Влияние перечисленных факторов на допуск замыкающего (исходного) размера учитывают с помощью коэффициентов относительного рассеяния ) /,о = 20j-JTAj, (для закона нормального распределения о = 1) и асимметрии кривой распределения а/,о = [М (Л/,о) — Лт/.о1 0,57Л/,о, где М (Л/,о) — координата центра группирования случайной величины Л /,о = 0,5 (Л/,сшах + Лу,о ,ш) — координата середины поля допуска, равная полусумме предельных размеров (если кривая распределения симметрична относительно середины поля допуска, то о. /,о = 0), а также коэффициента t, учитывающего процент риска (для закона нормального распределения при проценте риска Р = = 0,27 % t = 3).  [c.189]

Рассчитывается возможная координата середины поля рассеяния замыкающего звена (13) в случае необходимости рассчитывается координата центра группирования размеров замыкающего звеца (14) прн необходимости рассчитывается возможный коэффициент выхода отклонений замыкающего звеиа за пределы его поля допуска.  [c.142]


Смотреть страницы где упоминается термин Координата середины поля поля рассеяния : [c.425]    [c.86]    [c.87]    [c.87]    [c.220]    [c.60]    [c.347]    [c.351]    [c.358]    [c.54]    [c.110]    [c.139]    [c.139]   
Основы метрологии, точность и надёжность в приборостроении (1991) -- [ c.192 , c.221 ]



ПОИСК



Поле рассеяния

Рассеянное поле



© 2025 Mash-xxl.info Реклама на сайте