Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы полимерные — Их влияние на механические свойства

ВЛИЯНИЕ ПОЛИМЕРНОЙ МАТРИЦЫ НА ФОРМИРОВАНИЕ МЕХАНИЧЕСКИХ СВОЙСТВ  [c.156]

Влияние полимерной матрицы на механические свойства  [c.157]

Очевидно, что механические свойства поверхности раздела также оказывают значительное влияние на прочность адгезионной связи. Поэтому, для того чтобы свести до минимума напряжения, возникающие в композитах, необходимо при их разработке учитывать размер волокна, его содержание, модули упругости полимерной матрицы и волокна, а также температурно-временные режимы изготовления материала.  [c.263]


Книга посвящена рассмотрению результатов изучения поверхности раздела упрочнитель — полимерная матрица в композиционных материалах волокнистого строения. В ней подробно обсуждаются проблемы, которые были только затронуты в книге Современные композиционные материалы . Среди них такие, как химия поверхности армирующих волокон, природа связи на поверхности раздела, роль различных обработок поверхности волокон (в основном силановыми аппретами) в формировании границы раздела полимер — минеральные волокна, механизм передачи напряжений через поверхность раздела, влияние начальных термических напряжений на механические свойства композитов, стабильность композитов при воздействии влаги.  [c.5]

На рис. 7.5,6 показано распределение термических напряжений в матрице композита с ортогональной схемой армирования [0°/90°]s (свойства компонентов те же, что и у рассмотренного однонаправленного композита). Как видно, распределение усадочных напряжений в матрице изменяется со схемой армирования композита. У композита [0790°]s напряжения в матрице в направлении армирования значительно выше, чем в однонаправленном материале, и отношения главных напряжений различны. Влияние термических усадочных напряжений на механические характеристики слоистого композита будет обсуждаться в следующих разделах. Предварительно рассмотрим, как влияют на величину усадочных напряжений свойства ползучести полимерной матрицы. Без учета этих свойств нельзя рассчитать изменения поля напряжений, связанные с режимом охлаждения и дополнительного отверждения.  [c.262]

ВОЛОКОН связующим. Обычно полимерные связующие хорошо смачивают поверхность армирующих волокон при использовании металлических связующих проблема смачиваемости приобретает особое значение. И борные, и углеродные волокна плохо смачиваются расплавами металлов и сплавов. Поэтому, для того чтобы металлическое связующее достаточно хорошо проникало в межволоконное пространство, необходимо проводить специальную обработку поверхности волокон. Однако такая обработка элементарных волокон в пучке затруднена контактом волокон друг с другом это обстоятельство характерно для углеродных армирующих материалов, состоящих из большого числа элементарных волокон. Следует отметить, что вещества, нанесенные на поверхность тонких волокон, оказывают заметное влияние на свойства матрищ>1. Так, при нанесении поверхностного слоя толщиной 0,5 мкм на волокна диаметром 5 мкм площадь поперечного сечения поверхностного слоя составляет 44% площади поперечного сечения волокон. Это приводит к заметному изменению механических и физических свойств матрищ>1. Площадь поперечного сечения поверхностного слоя такой же толщины, нанесенного на борные волокна диаметром 100 мкм, составляет всего лишь 2% площади поперечного сечения волокон и его влияние на свойства матрицы менее значительно.  [c.269]


Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использо-Bainie такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось ие вполне точным. Само понятие композиционный уже указывает на присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря на несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например иесмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ухудшению механических свойств композиционных материалов, оказывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность.  [c.287]

Влияние структурных факторов и полимерной матрицы ва механические свойства. О важности учета влияния полимерной матрицы свидетельствуют данные экспериментов (табл. 9.16), полученные на двух различных в технологическом отношении типах матриц — эпоксидной ЭДТ-10 и фенолформальдегидной (ФН). Все материалы изготавливались по одной и той же схеме армирования, в которой распределение волокон по направлекиям X я у было одинаковым.  [c.290]

Глава посвящена влиянию вязкоупругости на термомехаиическое поведение и срок службы композитов с полимерной матрицей. В первую очередь коротко рассмотрено линейное вязкоупругое поведение полимерных смол при температурах выше и ниже температуры стеклования. Далее показан простой способ учета этого поведения при оценке эффективных термомеханических свойств композитов и анализе остаточных напряжений, являющихся следствием термической и химической усадки компонент этих материалов в процессе переработки. Затем изложен анализ колебаний и распространения волн в диапазоне упругих свойств композитов. Особое внимание при этом уделено использованию алгоритма быстрого преобразования Фурье ), Разделы, посвященные линейной вязкоупругости, завершаются описанием процессов трещинообразования на микро- и макроуровне при помощи аналитических методов и алгоритма FFT, В главу также включено обсуждение предварительных вариантов моделей, позволяющих учесть влияние статистической природы дефектов на нелинейное механическое поведение композитов и характер их разрушения под действием переменных во времени нагрузок.  [c.180]

В любом композиционном материале должны быть по крайней мере две различные фазы, разделенные межфазной границей или областью (слоем). Хотя влияние границы раздела на свойства композиционных материалов может быть значительным, его не следует переоценивать. Однако недооценивать его также не следует. Причина, по которой чрезвычайно трудно значительно улуч-щать одновременно такие свойства композиционных материалов как жесткость, механическая прочность и стойкость к росту трещин, кроется, по крайней мере частично, в особенностях и свойствах граничных областей. Так, в простейшем случае, облегчая отслаивание полимерного связующего от стеклянного волокна в полиэфирных стеклотекстолитах, можно добиться повышения стойкости к росту трещин, но при этом прочность понизится, и наоборот, повышая прочность сцепления полимер — наполнитель, можно добиться повышения прочности, но за счет снижения энергии роста трещин. Повысить энергию роста трещин наряду с другими способадми можно классической остановкой трещины (рис. 1.8), тогда как прочность можно повысить путем равномерной передачи усилий с матрицы на волокна, возможной только при прочной адгезионной связи между фазами [25]. При этом следует пом-  [c.41]


Такое воздействие жидких сред на деформационные свойства пентапласта объясняется влиянием различных физических и хиыических процессов, в частности, сорбции, диффузии, набухания и химического взаимодействия. Среда оказывает воздействие не только на поверхность, но и на весь объем образца. Проникновение среды в объем пентапласта облегчается механическим напряжением, что связано с разрыхлением структуры. Среда в л и я е т также на межмолекулярное взаимодействие макромолекул в объёме полимерной матрицы, облегчая тем самым их деформацию относительно друг друга и по оси приложенного напряжения.  [c.84]


Смотреть страницы где упоминается термин Матрицы полимерные — Их влияние на механические свойства : [c.160]    [c.38]    [c.146]   
Композиционные материалы (1990) -- [ c.290 , c.291 ]



ПОИСК



141 — Влияние на свойства

Влияние полимерной матрицы на формирование механических свойств



© 2025 Mash-xxl.info Реклама на сайте