Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система отсчета Коперника

Как уже было отмечено ( 7), в динамике выбор системы отсчета может играть существенную роль. Пользуясь различными системами отсчета, мы обнаружим, что одни и те же тела по отношению к этим различным системам отсчета движутся, вообще говоря, по-разному. Значит, и законы движения этих тел в разных системах отсчета, вообще говоря, оказываются различными. Та важная роль, которую может играть выбор системы отсчета, впервые стала ясной благодаря Копернику. Он заменил связанную с Землей систему отсчета, которой пользовался Птолемей, другой системой отсчета, связанной с Солнцем и звездами. Этим Коперник достиг радикального упрощения описания характера движения планет.  [c.64]


Следуя Копернику, Ньютон раз и навсегда в качестве тел отсчета выбрал Солнце и звезды говоря о системе отсчета, связанной с Солнцем и звездами, он применял термин абсолютное пространство . Правда, попытка Ньютона вложить в термин абсолютное пространство конкретное содержание с современной точки зрения является бесплодной, но сама по себе система отсчета, предложенная Коперником и выбранная Ньютоном в качестве единственной системы отсчета, оказалась столь удобной и обладающей такими преимуществами перед другими системами отсчета, что она до сего времени сохранила в механике избран-  [c.64]

Приведем пример системы отсчета. Для изучения движения планет солнечной системы относительно системы Солнце — звезды можно в течение сравнительно длительного промежутка времени систему- Солнце — звезды считать твердым телом. Совмещая начало системы отсчета с центром Солнца и связывая направления декартовых осей с направлениями на определенные звезды, получим гелиоцентрическую систему отсчета Коперника.  [c.11]

Движение планет относительно Солнца (гелиоцентрическая система Коперника) значительно проще, и рассмотрение движения планет именно в этой системе позволило установить основной закон небесной механики — закон всемирного тяготения Ньютона. А зная движение планет вокруг Солнца, далее можно установить и их движение относительно Земли. В ряде случаев задачу об описании движения расчленяют на два этапа. Рассмотрим две системы отсчета, движение которых относительно друг друга известно, и пусть известно движение точки относительно одной из систем. Каково будет движение точки относительно второй Этот вопрос и разрешается в данном параграфе.  [c.56]

При неизменном расстоянии тела отсчета, т. е. Земли, относительно Солнца ускорение Земли в системе Коперника постоянно и равно а. Поэтому результирующая сил инерции и тяготения, действующая на тело А в системе 3, зависит от положения тела А относительно тела отсчета (Земли). Чем ближе тело А к Земле, тем ближе значения тех ускорений а и 6 , которые Солнце сообщает Земле и телу А.  [c.338]

В системе отсчета Птолемея движения планет выглядели столь сложно, что в течение многих веков астрономам не удавалось найти обише и наглядные законы движения планет. В системе отсчета, введенной Коперником, характер движения планет настолько упростился, что Кеилеру удалось (в начале XVII в.) в самом общем виде сформулировать законы движения всех планет солнечной системы. Так была продемонстрирована та существенная роль, которую может играть выбор систем отсчета, и то упрощение характера движений, которое надлежащим выбором системы отсчета может быть достигнуто. Все это говорило в пользу применения введенной Коперником системы отсчега для изучения законов движения небесных тел.  [c.64]


Галилеева симметрия в конце XIX в. не включалась в канонический формализм как мы уже отмечали, вопрос о том, какой закон сохранения отвечает ей, оставался открытым. В силу особой роли времени в классической механике галилеево-ньютонова группа как некоторая единая система преобразований, действующая на пространственно-временном многообразии, оставалась неизвестной, несмотря на то, что все ее генераторы были известны, по существу говоря, со времени Галилея и Ньютона. Галилеев принцип относительности имел большое значение для обоснования системы Коперника (Галилей), использовался Гюйгенсом в качестве одного из главных постулатов теории упругого удара, но уже в Началах Ньютона формулировался в виде следствия из трех основных аксиом или законов механики, а в механике XVIII в., как правило, не фигурировал вообще. Во второй половине XIX в. возобновляется некоторый интерес к физическим основам механики, в частности к вопросам об абсолютном пространстве, инерциаль-ных системах отсчета и принципе относительности Галилея (Э. Мах, К. Нейман, Л. Ланге и др.) . Частично это было связано с проблемой увлекаемо-сти эфира в оптике и электродинамике движущихся сред. Однако исследования эти не носили систематического характера, и галилеева симметрия в механике не рассматривалась на одном уровне с евклидовой симметрией. Отчетливое понимание роли галилеевой симметрии в классической механике и открытие галилеево-ньютоновой группы произошло, по сути дела, после открытия теории относительности. Ф. Клейн в этой связи подчеркивал Эта выделенность t (т. е. времени.— В. В.) играла определенную тормозящую роль в истории развития механики. Несмотря на то, что уже Лагранж  [c.238]

Вопрос о выборе неподвижной системы отсчета возник в глубокой древности. Он обсуждался еще Аристотелем. Коперник (1473—1543) уже вводит понятие преимущественной системы отсчета, связанной с Солнцем и звездами. Наконец, Г. Галилей вводит понятие инерциальной системы координат и утверждает, что никакие механические опыты и наблюдения, производимые внутри этой инерциальной системы отсчета, не дают возможности решить вопрос о том, имеет ли система в целом прямолинейное равномерное движение или же она находится в покое. В этом утверждении заключается принцип относительности Г алилея.  [c.622]

На основе закона всемирного тяготения и второго закона Ньютона была создана количественная теория движения небесных тел относительно гелиоцентрической системы отсчета. Совпадение наблюдений и выводов этой теории доказало инерциальность гелиоцентрической системы Коперника — Бруно и ее преимущественно сть над геоцентрической системой Птолемея, что явилось крупным шагом в победе материалистического воззрения на вопросы мироздания.  [c.88]

Например, движение планет удобнее всего описывать в гелио центрической системе отсчета, т. е. в системе Коперника. Но если бы мы стали рассматривать в этой же системе координат движение Луны, то труднее было бы выяснить характер действующих на нее сил. Более удобно изучать движение Луны в геоцентрической системе координат — системе Птолемея. Однако, если бы нас заинтересовал вопрос, попадет ли Луна в хвост кометы Галлея, когда в 1985—1986 гг. комета приблизится к Солнцу, разумно было бы применить гелиоцентрическую систему координат. Все дело в удобстве.  [c.21]

Аберрация света была открыта в 1727 г. королевским астрономом Брадлеем (1692—1762) при наблюдении звезд в телескоп. По этой причине ее называют также астрономической аберрацией. При описании этого явления в качестве неподвижной системы отсчета 5 возьмем систему Коперника (в которой Солнце считается неподвижным), а в качестве движущейся системы S — систему, связанную с Землей. При этом мы полностью отвлечемся от вращения Земли вокруг собственной оси и будем рассуждать так, как если бы этого вращения совсем не было. Оси X и X выберем в направлении  [c.655]


Смотреть страницы где упоминается термин Система отсчета Коперника : [c.96]    [c.82]    [c.11]    [c.36]    [c.41]   
Курс теоретической механики для физиков Изд3 (1978) -- [ c.11 ]



ПОИСК



Коперник

Отсчет

Система отсчета

Система отсчета (см. Отсчета система)



© 2025 Mash-xxl.info Реклама на сайте