Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обтекание тупого профиля со сверхзвуковой скоростью

Речь идёт об обтекании газом, имеющим сверхзвуковую скорость, тупого (встречающего под прямым углом ось) профиля, симметричного относительно оси потока. Сосредоточим внимание на частице, движущейся по оси симметрии. На некотором расстоянии от профиля она пройдёт, как показывает опыт, сквозь поверхность сильного разрыва, а затем добежит прямолинейно до профиля в точке Мд его пересечения с осью симметрии с тем, чтобы после этого начать двигаться по криволинейной траектории, огибая профиль. Найдём давление в точке Мд. Еслн не учесть появления перед стенкой сильного разрыва, то давление в А1д следовало бы рассчитать просто по уравнению Бернулли, полагая в нём г = 0. Релей первый обратил внимание на появление поверхности разрыва и на связанное с ним изменение давления в Мд. Чтобы дать формулу Релея, предположим, что газ движется с постоянным давлением постоянной плотностью Р5 и постоянной скоростью Vx,. При этом  [c.104]


Очертание задней кромки профиля до последнего времени не отличалось разнообразием — применялись острые кромки. Для дозвукового обтекания они были наивыгоднейшими во всех отношениях. Однако для сверхзвуковых скоростей (особенно для Af>2) могут оказаться выгодными тупые задние кромки они позволяют без ущерба для прочности крыла сделать более острой переднюю кромку профиля и уменьшить положительные избыточные давления перед крылом, которые при больших сверхзвуковых скоростях играют большую роль в создании волнового сопротивления, чем разрежение сзади.  [c.79]

Отрыв потока с передней кромки может оказать влияние на весь режим обтекания поверхности. Как и в других случаях отрыва потока, вязкий поток отрывается на передней кромке под действием положительного градиента давления. При достаточно больших углах атаки крылового профиля положительный градиент давления на передней кромке с малым радиусом закругления оказывается достаточно большим, чтобы вызвать отрыв. При больших числах Маха отрыв потока с передней кромки зависит от интенсивности скачка уплотнения, образующегося около передней кромки. Даже при малых углах атаки тонкого крыла с большой стреловидностью и с заостренной передней кромкой поток отрывается от передней кромки с образованием вихрей над верхней поверхностью крыла, оказывая влияние на аэродинамические характеристики, в особенности в условиях взлета и посадки, а также под действием порывов ветра и взрывных волн в атмосфере. Другим интересным явлением считается отрыв потока с острия иглы, установленной перед тупой носовой частью тела при сверхзвуковых скоростях. Такая игла может способствовать уменьшению сопротивления и теплопередачи к летательным аппаратам, развивающим большие скорости ). Она может быть также использована как эффективное средство управления.  [c.200]

Указание профиль крыла рассматривается как тонкая пластина параметры воздуха на внешней границе пограничного слоя рассчитываются снизу как за косым скачком уплотнения, а сверху как параметры воздуха после обтекания тупого угла потоком со сверхзвуковой скоростью.  [c.199]


В решетках с профилями группы Б (Мх < 1,2) спинка в косом срезе, где происходит увеличение скорости потока до сверхзвуковой, выполняется прямолинейной. Это делается потому, что выгнутая, спинка (большая кривизна) привела бы к местному повышению скорости у поверхности лопатки до значительной сверхзвуковой (местное обтекание тупого угла) с последующим торможением в в скачке уплотнения, сопровождающимся потерями энергии (волновые потери).  [c.239]

П ри изучении сверхзвуковых течений этой же группой исследователей обнаружен еще один весьма своеобразный эффект. Для определения интенсивности диссипации энергии ими разработан метод, основанный на непосредственном вычислении изменения энтропии при адиабатическом течении. Применение этого метода, который обладает чувствительностью существенно более высокой, чем обычный метод, основанный на определении коэффициента гидродинамического сопротивления, позволило обнаружить весьма значительное ослабление диссипации энергии непосредственно при переходе через скорость звука. Этот эффект в совокупности с эффектами, обнаруженными другими авторами, в особенности с результатами исследований М. Е. Дейча (ламинариза-ция профиля скорости, восстановление докритической формы обтекания тупых тел), приводит к заключению, что в сверхзвуковых условиях имеет место вырождение турбулентности. Естественно связать этот эффект с действием отрицательного градиента давления.  [c.15]

Обтекание тонкого клина с затупленной передней кромкой. В качестве простейшего примера обтекания потоком с большой сверхзвуковой скоростью профиля с тупой передней кромкой рассмот-зим обтекание тонкого затупленного клина. Для этого случая в эквивалентной задаче о неустановившемся движении газа с плоскими волнами Е ф и = V iga = onst ф а - полуугол раствора клина). Это движение не автомодельно даже тогда, когда начальным давлением газа можно пренебречь по сравнению с давлением за ударной волной. Приближенное решение можно получить при помощи метода зазложения решения в ряды по степеням (7 — 1)/(7 + 1), изложенного в [15]. Однако, учитывая, что и он является довольно трудоемким, мы произведем дальнейшее его упрощение, позволяющее получать решение элементарным путем с сохранением удовлетворительной точности.  [c.299]

При обтокашти решёток, составленных из обычных профилей с тупым носиком, перед каждым профилем образуется криволи-нишая ударная волна (фиг. 251), за которой располагается зона дозвуковых скоростей. Однако дальше скорость вновь увеличивается так, что при обтекании профиля в решётке почти всюду на его поверхности получаются сверхзвуковые скорости 1). Б густой решётке отдельные ударные В0.Т1НЫ, образующиеся перед каждым профилем, могут слиться в одну ударную волну периодического характера.  [c.449]

Задняя К ромка профиля заострена. Передняя кромка выполняется тупой для дозвуковых профилей и острой — для сверхзвуковых. Острая кромка улучшает условия обтекания крыла потоком воздуха при сверхзвуковой скорости.  [c.98]


Смотреть страницы где упоминается термин Обтекание тупого профиля со сверхзвуковой скоростью : [c.74]   
Теоретическая гидромеханика Часть2 Изд4 (1963) -- [ c.104 ]



ПОИСК



Л <иер сверхзвуковой

Обтекание

Профиль скорости

Сверхзвуковая скорость

Сверхзвуковое обтекание профиля



© 2025 Mash-xxl.info Реклама на сайте