Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Регулятор адаптивный с многомерный

Цифровые регуляторы не только заменяют по нескольку аналоговых, но они могут реализовать также дополнительные функции, выполнявшиеся ранее другими устройствами, или совершенно новые функции. Упомянутые дополнительные функции включают, в частности, программируемую проверку номинальных режимов, автоматический переход к обработке различных управляемых и регулируемых переменных, подстройку параметров регулятора, осуществляемую по разомкнутому циклу в соответствии с текущим режимом работы системы, контроль предельных значений сигналов и т. п. Можно привести и примеры новых функций — это обмен информацией с другими регуляторами, взаимное резервирование, автоматическая диагностика и поиск неисправностей, выбор требуемых управляющих алгоритмов, и в первую очередь реализация адаптивных законов управления. На основе цифровых регуляторов могут быть построены системы управления любых типов, включая системы с последовательным управлением, многомерные системы с перекрестными связями, системы с прямыми связями. При этом программное обеспечение подобных систем можно без труда корректировать как в предпусковой период, так и в процессе их эксплуатации. Немаловажно и то, что цифровые регуляторы позволяют изменять их параметры в весьма широких диапазонах и способны работать с практически любыми тактами квантования. Таким образом, все вышесказанное позволяет утверждать, что цифровая измерительная и управляющая техника со временем получит самое широкое распространение и в значительной степени вытеснит традиционную аналоговую технику.  [c.8]


В разд. 15.3 рассматривались оптимальные регуляторы состояния для стохастических возмущений, синтез которых связан с минимизацией критерия качества (15.1-5) и в которых используется оценивание переменных состояния. Вывод уравнения такого регулятора состояния выполнялся на основе изложенной в гл. 8 методики построения регуляторов состояния для детерминированных возмущений. В этой главе приведен другой метод, основанный на принципе минимальной дисперсии, о котором шла речь в гл. 14. Такой подход использует предсказание характеристик шума и оказывается особенно эффективным для адаптивного управления многомерными объектами. Для получения стохастических регуляторов с минимальной дисперсией воспользуемся моделью в пространстве состояний (что оказывается удобным для идентификации)  [c.345]

Затраты времени составляют около 90 мин. При другом способе достаточно задать ступенчатые изменения уставок при 1—0 и одновременно запустить адаптивный алгоритм с ограничениями на управляющие переменные в диапазоне —10% и -М0%. Переходные процессы, представленные на рис. 30.3.3, б, показывают, что система управления стабилизирует выходные переменные всего через 20 мин. Реакция системы на ступенчатое изменение уставки в момент 1=32 мин демонстрирует очень хорощее качество управления. На реализацию этого варианта требуется около 70 мин. На рис. 30. 3.3, в приведена реакция двумерной системы управления с подстройкой параметров на ступенчатое изменение уставки давления пара. Сравнение этих результатов с результатами, представленными на рис. 30.3.1, в (регуляторы с оптимизируемыми параметрами), показывает существенное улучшение качества регулирования, особенно температуры пара. При этом статическая ощибка и время установления уменьшаются от 4,2 до 1,3 К и от 50 до 25 мин соответственно, а регулирование давления происходит без перерегулирования. З от пример показывает, что использование регулятора о обратными связями по полному вектору состояния обеспечивает значительно более высокое качество управления, чем введение двух основных регуляторов с оптимизируемыми параметрами. Время, затрачиваемое на реализацию многомерного управления с подстрой-  [c.508]

Применение микропроцессоров сделало возможной реализацию широкого круга алгоритмов управления — от традиционных простых ПИ-регуляторов до сложных многомерных или адаптивных алгоритмов. Традиционные методы ручного проектирования перестали быть эффективными и ограничивают число используемых алгоритмов управления. В то же время аппаратное и программное обеспечение ЭВМ и графические терминалы позволяют проектировать системы управления в интерактивном режиме, эффективно синтезировать далее наиболее сложные алгоритмы управления.  [c.193]


На рис. 30.3.3 представлены результаты, полученные с применением многомерного адаптивного регулятора [25.33]. Регулятор представляет собой сочетание рекуррентного метода наименьших квадратов (для многомерной модели) с регулятором состояния, синтезируемого по минимуму квадратичного критерия качества РМНК-КК1/РС. В соответствии с рис. 30.3.3, а вначале на оба входа объекта управления подаются два различных ПСДС, чтобы с помощью идентификации разомкнутого контура получить начальное приближение модели объекта для адаптивного регулятора, который включается в контур управления через 35 мин. Система сразу приходит в установившееся состояние без наличия статической ошибки. Качество управления при ступенчатом изменении двух уставок, как показывают переходные процессы на рис. 30.3.3, г, очень хорошее.  [c.505]


Смотреть страницы где упоминается термин Регулятор адаптивный с многомерный : [c.18]    [c.388]   
Цифровые системы управления (1984) -- [ c.344 , c.347 , c.434 ]



ПОИСК



Многомерность

Регуляторы адаптивный



© 2025 Mash-xxl.info Реклама на сайте