Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вихревая пара, распределение скоростей

Вихревая пара, распределение скоростей — —184 Вихревое движение, динамика — —172  [c.221]

Изложенные в предыдущих параграфах способы расчета пограничного слоя при нестационарном движении позволяют проследить развитие течения только в продолжение очень небольшого промежутка времени после начала отрыва. В дальнейшем, когда отрыв уже произошел, течение вне пограничного слоя сильно изменяется, причем особенно сильно в случае тела с тупой кормовой частью, как, например, у круглого цилиндра. Это обстоятельство влечет за собой значительное отклонение действительного распределения давления от теоретического потенциального распределения, вследствие чего использование последнего распределения для продолжения расчета дает совершенно неверные результаты. Представление о действительной картине течения, возникающего позади круглого цилиндра после отрыва пограничного слоя, дает серия фотографий, изображенных на рис. 15.5. Первая фотографии (рис. 15.5, а) показывает, что в начальный момент разгона получается такая же картина линий тока, как при невязком потенциальном течении. Вторая фотография (рис. 15.5, б) снята в тот момент, когда в задней критической точке только что начался отрыв пограничного слоя. На третьей фотографии (рис. 15.5, в) точка отрыва уже успела переместиться далеко вверх по течению. Линия тока, отходящая от точки отрыва, окружает область, в которой скорости очень малы. Вихревая напряженность больше всего вне этой линии тока. Здесь образуется вихревой слой, который при дальнейшем развитии течения свертывается в два концентрированных вихря (рис. 15.5, г). В свободном течении позади этой пары вихрей, там,  [c.394]


При обтекании круглого цилиндра потенциальным потоком благодаря симметричному распределению давлений по поверхности цилиндра результирующая этих сил равна нулю (парадокс Даламбера). Следовательно, для этого случая = 0. Можно доказать, что во всех случаях безотрывного обтекания цилиндрических тел потенциальным потоком сопротивление давления равно нулю. Однако при отрывном обтекании, когда за телом образуется мертвая зона или суперкавитационная каверна (см. п. 10.2), теория потенциальных течений дает не равное нулю значение силы сопротивления давления. Так, в п. 7.12 было доказано, что при струйном обтекании пластины, поставленной нормально к потоку (см. рис. 7.30), коэффициент лобового сопротивления, являющегося в данном случае сопротивлением давления, равен 0,88. Это подтверждается опытом только в тех случаях, когда за обтекаемым телом действительнсГобразуется зона, заполненная парами или газом, в которой давление приблизительно постоянно, как это предусмотрено теорией. Но в большинстве случаев за обтекаемым телом образуется так называемый гидродинамический след, представляющий собой область, заполненную крупными вихрями, которые, взаимодействуя и диффундируя, постепенно сливаются и теряют индивидуальность. На достаточном расстоянии от тела (дальний след) образуется непрерывное распределение дефекта скоростей в потоке, близкое к распределению скоростей в струнном пограничном слое. Наличие вихрей в гидродинамическом следе приводит к понижению давления на тыльной части поверхности тела и соответствующему увеличению сопротивления давления, которое часто называют также вихревым сопротивлением.  [c.391]

Статья главным образом (п.п. 3-6) посвящена анализу динамики как дискретных, так и распределенных бароклинных вихрей с нулевой суммарной интенсивностью — хетонов. Бароклинные вихри, в отличие от классических (баротропных) вихрей в идеальной жидкости, обладают запасом не только кинетической, но и доступной потенциальной (тепловой) энергии. Как показано в [7], бароклинная природа вихрей кардинально изменяет как структуру индуцируемых ими полей скорости, так и характер вихревого взаимодействия. При условии равенства нулю суммарной интенсивности вихревые структуры обладают важным свойством самодвижения (образуется двухслойная вихревая пара, движущаяся как целое без изменения формы и интенсивности [7]). В частности, каждый из двух точечных вихрей, сосредоточенных в разных слоях двухслойной жидкости и имеющих равновели-  [c.548]


Динамика продольной компоненты волновой скорости и отражает процесс перестройки вихревой картины, а именно — положительным значениям радиальной скорости (выносу высокоскоростной массы из внутренних областей) соответствуют положительные значения продольной компоненты и наоборот — внос малоскоростного газа из внешних приграничных областей приводит к появлению отрицательных значений и. Существование вихревой пары в поперечном сечении может давать распределения даже с тремя локальными максимумами  [c.145]


Смотреть страницы где упоминается термин Вихревая пара, распределение скоростей : [c.184]   
Гидро- и аэромеханика Том 1 Равновесие движение жидкостей без трения (1933) -- [ c.184 ]



ПОИСК



Вихревые усы

Распределение скоростей



© 2025 Mash-xxl.info Реклама на сайте