Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Апертура объектива

Разрешающая сила микроскопа. Явление дифракции на апертуре объектива ограничивает возможности микроскопа. Как и в других оптических приборах, для количественной характеристики способности микроскопа вводится понятие его разрешающей силы.  [c.199]

Таким образом, разрешающая сила микроскопа тем больше, чем больше значение п sin и. Эта последняя величина получила название числовой апертуры объектива и обычно обозначается через Л.  [c.350]

Общее увеличение микроинтерферОметра МИИ-4 составляет 490 при визуальном наблюдении и 260 при фотографировании. Размеры поля зрения 0,32 мм при визуальном наблюдении и 0,10 мм при фотографировании. Апертура объектива 0,65. Масса прибора 23 кг и габариты 300 x 340 x 380 мм. Средняя арифметическая погрешность измерений, по данным завода-изготовителя, составляет 0,03—0,04 мкм при измерении неровностей высотой 0,05—0,10 мкм и 0,06—0,08 мкм — неровностей высотой 0,2—1,0 мкм. Однако нередко погрешности оказываются в 1,5—3 раза большими.  [c.95]


Поскольку пределы измерения ограничиваются разрешающей силой и глубиной изображения прибора, что обусловлено апертурой объектива, то для каждого объектива, прикладываемого к приборам, существуют определенные пределы измерения. Эти данные представлены в табл. 12.  [c.93]

Для определения числовой апертуры объектива микроскопа в конце XIX в. применяли апертометр Аббе, состоящий из полукруглой стеклянной пластинки с нанесенными на ней двумя шкалами и подвижными рамками.  [c.373]

Независимо от погрешностей объектива (линзы или зеркала) астрономического телескопа он даже в самом лучшем случае дает не точечное изображение звезды, а лишь картину Эри распределения интенсивности, обусловленного апертурой объектива телескопа (такую линзу называют дифракционно ограниченной). В более широком контексте гл. 5 эта картина-отклик системы на точечное (импульсное) воздействие-является функцией рассеяния точки (ФРТ) этой системы.  [c.33]

Предел разрешения может быть сделан меньше указанного, так как комбинация нулевого порядка с одним только максимумом первого порядка вполне достаточна для формирования изображения с основным периодом решетки. Используя сходящийся пучок, можно добиться того, что лучи будут приходить на противоположные края апертуры объектива и тогда предел разрешения Х/2. Это минимальное условие присутствия максимумов нулевого и первого порядков выражает принцип Аббе.  [c.95]

Если на пути лучей ставить призму Р1 г, первая поверхность которой сферическая, то при надлежащих значениях радиуса кривизны, показателя преломления призмы и ее толщины можно исправить все аберрации 3-го порядка и две хроматические аберрации—положения и увеличений прн этом аберрации высших порядков малы и апертура объектива может быть доведена до  [c.315]

А — численная апертура объектива или, как часто говорят, апертура объектива. Апертура определяется выражением  [c.7]

Для того чтобы увеличить апертуру объектива, пространство между препаратом и фронтальной линзой объектива заполняется так называемой иммерсионной жидкостью, в  [c.9]

Выше было сказано, что, по теории Аббе, разрешающая способность микроскопа зависит не только от апертуры объектива, но и ют апертуры осветительной системы. Кроме того, при больших уве-  [c.10]

Для того чтобы достигнуть наибольшей разрешающей способности с объективом данной апертуры, необходимо, чтобы и конденсор имел такую же апертуру. Поэтому при работе с иммерсионными объективами следует иногда помещать иммерсионную жидкость (масло, глицерин) также и между верхней линзой конденсора и предметным стеклом. Однако апертура конденсора, освещающего препарат, не должна превышать апертуру объектива, служащего для наблюдения. В противном случае на препарат будет падать излишний свет, который не попадет в объектив, а это приведет к уменьшению контрастности изображения. Для регулирования осветительной апертуры конденсоры снабжены ирисовой диафрагмой Да, ограничивающей пучок лучей. Эта диафрагма расположена в передней фокальной плоскости конденсора и проектируется конденсором и объективом в выходной зрачок объектива аа.  [c.11]


Освещение по методу темного поля подробно описано в разд. I. Следует сказать, что при работе с конденсором ОИ-10 в темном поле апертура объектива не должна превышать величину 0,7.  [c.168]

Апертура объектива при работе с сегментом определяется по формуле  [c.202]

F и А — фокусное расстояние и апертура объективов для длины тубуса оо-  [c.223]

Цифры, указывающие увеличение и апертуру объективов для тубуса длиной 160 и 190 мм.  [c.223]

Предметные и покровные стекла должны соответствовать по толщине, показателю преломления и дисперсии значениям, принятым при расчете объективов и конденсоров микроскопа. В противном случае они будут ухудшать качество изображения. Особенно важно соблюдать расчетные значения при ответственных экспериментах. При менее ответственных работах можно допустить некоторые отступления этих величин. Требования к предметным и покровным стеклам тем выше, чем больше численная апертура объективов. Кроме того, эти требования зависят от метода наблюдения.  [c.234]

Мы нашли выражение для разрешающей силы микроскопа, исходя из предположения, что точки объекта посылают некогерентные волны (объект самосветящийся), так что ди()зракционные картины просто накладываются одна на другую. Однако обычно в микроскоп рассматривают объекты освещенные, а не самосветящиеся. Это значит, что отдельные точки объекта рассеивают падающие на них волны, исходящие из одной и той же точки источника, и, следовательно, свет, идущий из разных точек объекта, оказывается когерентным. К такому случаю, гораздо более распространенному, наш вывод разрешающей силы микроскопа непосредственно неприложим (см. упражнение 120). Аббе указал весьма интересный прием определения разрешающей силы для случая освещенных объектов и нашел, что и в данном случае разрешающая сила также определяется числовой апертурой объектива. Метод рассмотрения Аббе состоит в следующем.  [c.350]

Примером многолучевого интерферометра может служить прибор Муль-тими фирмы Иогансон (Швеция). Его увеличение 50 и 150, апертуры объективов 0,14 и 0,18, поле зрения 3,25 и 1,18 мм соответственно. Пределы измерений 2. .. 0,01 мкм, точность до 0,002 мкм.  [c.69]

Микроскоп. Микроскоп снабжен длиннофокусным объективом с 20-кратным увеличением типа М.1487 фирмы Виккерс инстр -ментс ЛТД. . Числовая апертура объектива равна 0,65, фокусное расстояние — 12,2 мм, глубина резкости — 4 мк. Последняя особенность объектива позволила применить метод оптических сечений, с помощью которого можно получать фотографии треков частиц в пленке с разрешающей способностью но глубине около + 8 л/к. Используется окуляр фирмы Хьюдженайн с 6-кратным увеличением. Микроскоп прочно закрепляют на рабочем участке, чтобы свести к минимуму относительную вибрацию. Перемещение рычагов управления фокусировкой микроскопа усиливается стрелочным прибором, с помощью которого перемещение фокуса микроскопа может быть измерено с точностью 0,3 мк.  [c.192]

Разрешающая способность М. ( — 1/бпр) прямо пропорциональна апертуре объектива, и для её повышения пространство между объективом и предметом заполняется жидкостью с большим ( > 1) показателем преломления (см. Иммерсионная система). Макс, апертура сухих объективов А 0,95 апертура объективов с масляной и.ммерсией может быть доведена до 1,4. При этом в видимой области возможно разрешение структур с расстоянием между элементами 0,2 мкм.  [c.143]

Как показал Аббе, степень подобия изображения в М. самому объекту зависит от апертуры объектива. Если объект — дифракц. решётка PQ (рис. 3), освещённая параллельным пучком света, то дифрагпров. волны образуют в плоскости 1 у  [c.143]

Те же самые факторы определяют предел разрешения зрительных труб или фотокамер, предназначенных для наблюдения земных объектов. При нормальных условиях освещенности каждая точка наземного объекта рассеивает свет и участвует в формировании изображения независимо от соседних точек. Ситуация здесь фактически такая же, как при построении изображения звездного скопления. По этой причине термин самосветящийся объект зачастую с определенной степенью вольности используется в обоих контекстах для краткого указания на объекты, изображения которых строятся при некогерентньк условиях. В случае зрительной трубы или фотокамеры изображение каждой точки объекта, служащей источником, также не является точкой, а представляет собой дифракционную картину апертуры объектива (ср. с разд. 1.3.1). (Мы не будем рассматривать роль окуляра при формировании изображения телескопом или микроскопом, о котором речь идет ниже, поскольку он представляет собой вторичный элемент оптической схемы и не является главным источником искажений.)  [c.34]


Апертура объективов ограничивается его входным зрачком, который чаще всего является изображением, даваемым впереди стоящей оптикой апертурной диафрагмы, находящейся" в задней фокальной плоскости объектива, или оправой одной из последних линз однако правильнее считать, что размеры диафрагмы или ограничивающих оправ определяются максимально достижимой в борьбе с аберрациями апертурой объектива. Эта апертура может быть определена с небольшой точностью с помощью эмпирической зависимости, вытекающей из довольно строго соблюдающегося постоянства апертуры со стороны изображения. Эта апертура близка к 0,025—0,030. Она несколько больше для слабых объективов (0,03), нкколько меньше для сильных (0,025), еще меньше для иммерсионных (0,02) и план-апохроматов чем выше требования к качеству изображения, тем меньше выходная апертура. Эта зависимость позволяет определить входную апертуру по увеличению или, наоборот, увеличение по апертуре га sin Uj = = Р sin и = Ар, где k меняется от 0,03 до 0,015 в зависимости от группы, к которой принадлежит объектив,  [c.404]

Одной из важнейших характеристик микроскопа является его разрешающая способность. Разрешающая способность микроскопа ограничена вследствие диффракции света и зависит от численной апертуры объектива и длины волны света. В результате диффрак-дии изображение бесконечно малой светящейся точки, рассматриваемой в микроскоп, имеет вид круглого светлого диска, окруженного несколькими слабыми светлыми кольцами. Освещенность первого кольца равна 1,75% освещенности диска. Диаметр диска  [c.7]

Разрешающую способность микроскопа можно повысить цвумя путями либо увеличивая апертуру объектива и осветительной системы, либо уменьшая длину волны света, осве щающего препарат.  [c.9]

На фиг. 95 показана оптическая схема осветителя. Источник света 1 коллектором 2 проектируется в плоскость апертурной диафрагмы 3. Полевая диафрагма 4 линзой 5 и объективом 6 проектируется на объект. На пути света может быть помещен светофильтр 7. Поляризатором служит поляризационная призма 8. Полупрозрачная отражательная пластинка 9 частично отражает в объектив свет, идущий из осветителя, и в то же время позволяет вести через нее наблюдения. Пластинка 9 может быть заменекс. призмой 10. С помощью призмы достигается большая освещенность поля зрения, эффект косого освещения, подчеркивающий рельеф в структуре, и отсутствие вредных рефлексов. Однако при этом вдвое уменьшается используемая апертура объектива (так как освещение и наблюдение ведутся через разные половины объектива), а следовательно, уменьшается и разрешающая способность объектива. Призма дает преимущества при изучении слабо-  [c.174]

Микроманипулятор — прибор, предназначенный для препари-ровальных работ над микроскопическими объектами, наблюдаемыми через микроскоп при средних увеличениях (апертура объектива до 0,65). Микроманипулятор применяется совместно с биологическими микроскопами типа М-11, МБР-1, МБД-1, МБР-3, МБИ-3 и позволяет производить изъятие вещества из объекта, прокол, рас-  [c.205]


Смотреть страницы где упоминается термин Апертура объектива : [c.340]    [c.353]    [c.354]    [c.32]    [c.148]    [c.51]    [c.127]    [c.139]    [c.143]    [c.154]    [c.448]    [c.23]    [c.25]    [c.33]    [c.35]    [c.95]    [c.190]    [c.411]    [c.11]    [c.20]    [c.158]    [c.202]   
Микроскопы, принадлежности к ним и лупы (1961) -- [ c.9 ]

Оптика (1985) -- [ c.243 ]

Техническая энциклопедия Том 1 (0) -- [ c.306 ]



ПОИСК



Апертура

Апертура микроскопического объектива

Апертура объектива 306, XIII

Общие формулы для светосилы оптического прибора — Светосила оптического прибора при малой передней апертуре (объективы зрительной трубы, фотографические объективы для ландшафтных съемок



© 2025 Mash-xxl.info Реклама на сайте