Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент гироскопический центральный

Тела, подобные телам вращения в отношении гироскопических свойств.—в предыдущем пункте мы сформулировали принцип стремления осей вращения к параллельности на основе изложенной выше теории движения тяжелого однородного тела вращения. Однако ни эта теория, ни самый принцип, который мы из нее вывели, не требуют, чтобы твердое тело было на самом деле телом вращения достаточно, чтобы центральный эллипсоид инерции тела был эллипсоидом вращения. Если это условие осуществлено, то ось симметрии этого эллипсоида будет обладать всеми свойствами, которые были выведены для оси симметрии тела в изложенной выше теории. Действительно, в силу соотношения, связывающего моменты инерции относительно двух параллельных прямых (п° 319), каждая точка оси симметрии центрального эллипсоида есть центр  [c.160]


С другой стороны, если ось махового колеса принуждена двигаться только в одной плоскости, то она будет стремиться приблизиться, насколько это возможно, к направлению полярной оси Земли, считая направление последней в зависимости от положительного смысла вращения Предположим, что ось колеса может перемещаться только в плос кости меридиана. Это можно осуществить, например, зажимая верти кальный круг в плоскости, расположенной в направлении с востока на запад На приложенном изображении (фиг. 50) сферы единичного радиуса том ка Р обозначает северный полюс Земли, С—полюс махового колеса, А — точку запада на горизонте. Пусть т — угловая скорость Земли, 6 — угол РОС. Обозначая через О центр сферы, мы видим, что скорость точки С слагается из 0 вдоль дуги P и со sin 6 параллельно ОА. Обозначим, как обычно, главные центральные моменты инерции махового колеса через А, А, С, а его угловую скорость через п. Составляющие гироскопической силы будут СпЬ параллельно ОА и Спел sin 0 вдоль СР.  [c.142]

В приборе Д. К. Бобылева гироскоп занимает центральное положение внутри однородного сферического слоя, и на первый взгляд кажется, что такой вид оболочки должен соответствовать простейшему случаю движения прибора. Оказывается, что это не так. Как показал Н. Е. Жуковский, задача теоретического исследования движения гироскопического шара Бобылева значительно упрощается, если к сферической оболочке добавить кольцо, расположенное в экваториальной плоскости гироскопа и такое, что разность полярного и экваториального моментов инерции шара равна экваториальному моменту инерции гироскопа (см. рис. 2.6). В 1897 г. Н. Е. Жуковский в работе О гироскопическом шаре Д. К. Бобылева дал геометрически наглядное исследование движений такого шара с гироскопом.  [c.67]

Гироскопический тахометр установлен на платформе, вращающейся с постоянной угловой скоростью и вокруг оси С. Определить первые интегралы движения, если коэффициент жесткости спиральной пружины равен с, моменты инерции гироскопа относительно главных центральных осей х, у, г соответственно равны А, В и С, причем В = А силы трения на оси г собственного вращения гироскопа уравновешиваются моментом, создаваемым статором электромотора, приводящим во врапгение гироскоп силами трения на оси прецессии н пренебречь.  [c.373]

Двухгироскопная гравитационно-гироскопическая система типа V-крен предназначена для стабилизации спутника вокруг центра его масс в орбитальной системе координат. Возникающие в центрально-симметричном гравитационном поле Земли или какой-либо иной планеты гравитационные моменты определенным образом ориентируют его относительно направления гравитационного поля Земли (эффект гантелей). При соответствующем выборе соотношения моментов инерции спутника относительно главных осей его инерции достигается пассивная трехосная стабилизация спутника в орбитальной системе координат, называемая его либрацией. (Об образовании восстанавливающего момента вокруг нормальной оси спутника при естественной его стабилизации в орбитальной системе координат см. гл. 1).  [c.90]



Теоретическая механика (1990) -- [ c.121 ]



ПОИСК



Гироскопический

Момент гироскопический

Моменты центральные

Ось центральная



© 2025 Mash-xxl.info Реклама на сайте