Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водяной пар, коэффициент поглощения спектр поглощения

Атмосферный воздух содержит 78 % азота, 21 % кислорода, 3,2- 10 2 0/ углекислого газа, 1,6 10 % метана, 7 10 % закиси азота. Кроме того, в атмосфере при стандартных условиях Р = = 1-013- 10 Па, 0 = 273 К) содержится 1333 Па водяного пара. Для идентификации спектра поглощения воздуха были исследованы спектры всех основных его компонент. Линии поглощения азота, кислорода, углекислого газа, метана, закиси азота при давлении Р 4-10 Па на спектрометре не регистрировались. Это свидетельствует о пренебрежимо малом (<3 10 см ) вкладе этих газов в коэффициент поглощения.  [c.165]


Например, спектр поглощения углекислоты состоит из ряда полос. Три из них, наиболее мощные, учитываются в теплотехнических расчетах. Аналогичное положение имеет место для водяного пара. В пределах соответствующих полос эти газы и испускают энергию. Как было сказано, при полосовых спектрах испускания закон Стефана — Больцмана не применим. В формуле (7-16) показатель п для O.j может быть приближенно принят равным 3,5, для Н 0 — равным 3. Если желательно сохранить четвертую степень при температуре, необходимо считаться с существенной зависимостью коэффициента С от температуры, что было уже отмечено формулой (7-17).  [c.211]

На рис. 1-1—1-5 приведены данные [71 ] о спектральной степени черноты и спектральном коэффициенте поглощения углекислого газа и водяного пара при различных толщинах слоя, давлениях и температурах. На рис. 1-1 показаны полосы поглощения СО а и HjO при температуре Т = 1200 К и полном давлении р = 0,101 МПа для двух толщин слоя L = 20 см и L = 200 см. Для каждого из газов парциальные давления приняты равными 0,101 МПа, Из рисунка видно, что излучение СО а сосредоточено в двух сравнительно узких полосах спектра, в то время как полосы HgO практи-  [c.19]

По своему физическому смыслу величина е°° представляет собой степень черноты газа при бесконечной толщине слоя. Имеющиеся экспериментальные данные показывают, что даже при максимальных толщи-нах слоя углекислого газа и водяного пара, для которых известны опытные данные, кривые степени черноты имеют еще значительный наклон, что объясняется наличием в спектре газов составляющих излучения с очень малыми спектральными коэффициентами поглощения. Существует мнение, что при действительной бесконечной толщине слоя величины е" для углекислого газа и водяного пара будут равны единице. В связи с этим их следует рассматривать как степень черноты очень больших объемов газа, укладывающихся, однако, в рамки наших обычных представлений, связанных с размерами теплотехнических агрегатов.  [c.106]

С составляет 1,7 см-ат, при 600°С 4,2 см-ат, при 800°С 8,0 см-ат и т. д., достигая при высоких температурах величины 13—14 см-ат. Собственное излучение единицы объема углекислого газа значительно превосходит собственное излучение водяного пара, что объясняется наличием в спектре углекислого газа полосы с очень большой величиной коэффициента поглощения.  [c.111]

Чтобы обеспечить высокие скорости истечения и КПД, в лазерном двигателе целесообразно использовать рабочие вещества с малой атомной массой, а температуру в теплообменной камере сделать максимально возможной. Оптимальным рабочим веществом является водород, однако он обладает низким коэффициентом поглощения энергии излучения. Величину этого коэффициента можно значительно поднять, ис пользуя небольшие добавки к водороду (например 1 % цезия и 1 9 водяного пара). Для такой смеси водорода, цезия и паров воды линейный показатель поглощения в инфракрасной области спектра с ростом температуры от 2000 до 6000 К увеличивается от 2 до 200 м при давлении газа 3 МПа [8].  [c.174]


При расчете прозрачности атмосферы для монохроматического излучения с длиной волны К в каждом конкретном случае некоторые составляющие в формуле (3.10) будут равны единице или весьма близки к ней. Так, например, для излучения с длиной волны Л= = 0,6943 мкм ослабления за счет углекислого газа не происходит, т. е. t (,Q ( )=1 ослабление излучения водяным паром при небольших его количествах весьма незначительно и начинает сказываться, когда толщина слоя осажденной воды становится больше 10 мм. Поглощение излучения озоном во всем видимом диапазоне спектра настолько мало, что им можно пренебречь. Величину tpi, учитывающую молекулярное рассеяние, рассчитывают по формуле Гр1 = для чего коэффициент ослабления api(A,) вычис-  [c.56]

Сравйивая между собой характеристики излучения углекислого газа и водяного пара, видим, что они сильно отличаются Друг от друга. В табл. 13 сравниваются основные показатели по обоим газам при разных температурах. Степень черноты спектра излучения водяного пара значительно больше, чем углекислого газа, коэффициенты же излучения и поглощения гораздо меньше. В соответствии с этим для тонких слоев интенсивность излучения водяного пара получается меньшей, чем для углекислого газа. По мере увеличения толщины слоя излучение водяного пара приближается к излучению углекислого газа и при толстых слоях оно превосходит излучение углекислого газа. Длина пути луча, при которой излучения углекислого газа и водяного пара равны, при  [c.110]

На такой же статистической основе составлен сводный график, учитывающий все виды поглощения в атмосфере (рис, 3,43), относящийся к тому же району. Верхние три сплошные кривые характеризуют поглощение в дожде, которое превышается соответственно в течение 0,001%, 0,01% и 0,1 % времени за год. Дождь — как наглядно показывает график — вызывает наиболее сильное поглощение в рассматриваемом диапазоне частот. К примеру, на частоте 30 Ггц (Я=1 см) только в течение 5 минут за год поглощение (в сильном дожде) превышает 10 дб/км. Две штрих-пунктирные кривые, расположенные ниже сплошных, характеризуют поглощение в тумане соответственно при видимости 30 и 150 м. Наконец, штриховыми линиями показано поглощение в водяных парах, превышаемое в течение 1% и 50% времени за год. Поглощение в кислороде воздуха (штрих-пунктирная линия) практически вариаций во времени не испытывает. Располагая статистическими данными о выпадении осадков и колебании влажности, аналогичные графики можно составить для любого района земного шара. Радиоволны оптических частот (инфракрасные лучи, видимый свет и ультрафиолетовые лучи) также подвержены сильному молекулярному поглощению. Особенно велико поглощение в ларах воды, для которых резонансные линии поглощения так тесно примыкают одна к другой, что образуют сплошные области поглощения. Впрочем, и в этом диапазоне волн также нмеются окна прозрачности, прежде всего, — окно )В диапазоне 0,4ч-0,85 мк, куда входит весь спектр видимого света )( 0,4—0,75 мк). Для того чтобы судить о степени прозрачности тролосферы в этом интер вале частот, достаточно вспомнить то многообразие красок и ясность восприятия, которое открывается человеческому глазу в часы освещенности в ясные дни, вспомнить вид усыпанного звездами ночного неба. Характеристики этого и других окон нрозрачности в диапазоне от 0,4 до 16 мк приведены в табл. 3.6. Коэффициент прозрачности указан при прохождении луча через всю толщу атмосферы (нормальное падение).  [c.182]

О деталях измерений в оригинальной статье сказано следующее Для практических применений, при отсутствии тумана, пропускание атмосферы является хорошим на участке 0,4—1,1 мкм. Наилучшие участки пропускания в инфракрасной области спектра расположены между полосами поглощения водяного пара, т. е. 1,2 1,5 и 2—2,3мкм. Затем имеются хорошие окна прозрачности 3,2—4,7 и 8—12 мкм. На рис. 23 представлена кривая коэффициента пропускания атмосферы между 0,6 и 10 мкм в присутствии легкого тумана с оптической плотностью 0,14 на километр .  [c.48]


Излучение чистых газов отличается от излучения твердых тел. Во-первых, поглощение и испускание лучистой энергии газами всегда имеет резко выраженный селективный характер. Например, спектр поглощения углекислоты состоит из ряда полос. Три из них, наиболее мощные, учитываются в теплотехнических расчетах. Аналогичное положение имеет место для водяного пара. В пределах соответствующих полос эти газы п испускают энергию. Как было сказано, при полосовых спектрах испускания закон Стефана— Больцмана не применим. В формуле (7-16) показатель п для СОз может быть приближенно принят равным 3,5, для НоО — равным 3. Если л<елательно сохранить четвертую степень при температуре, необходимо считаться с существенной зависимостью коэффициента С от температуры, что было уже отмечено формулой (7-17).  [c.195]

Оптико-акустический метод очень широко используется для получения количественной информации о спектрах поглощения и параметрах отдельных линий, порогах нелинейных спектроскопических эффектов. Так, с его помощью выполнены измерения коэффициентов поглощения атмосферного водяного пара и метана на отдельных линиях генерации СОг-лазеров [93], СО-лазеров [81] и (НеКе)-лазеров [57], проведены исследования контуров линий поглощения метана [4] и водяного пара [49] в области перестройки длины волны гелий-неонового (3,39 мкм) и рубинового (0,69 мкм) лазеров при вариации давления и состава газовой смеси.  [c.198]

При выборе спектрального участка необходимо учитывать, что по мере возрастания длин волн и понижения температуры коэффициент излучения для большинства металлов снижается. Кроме того, при выборе рабочего интервала в инфракрасной области спектра необходимо также учитывать, что некоторые участки спектра претерпевают в воздушном слое между прибором и излучателем замег-ное поглощение. Основными компонентами в воздухе, создающими заметное поглощение лучистой энергии в некоторых участках инфракрасной области спектра, являются водяные пары и углекислый газ.  [c.265]


Смотреть страницы где упоминается термин Водяной пар, коэффициент поглощения спектр поглощения : [c.68]    [c.310]    [c.236]   
Сложный теплообмен (1976) -- [ c.105 ]



ПОИСК



Водяной пар

Водяной пар, коэффициент поглощения

Коэффициент поглощения

Поглощение

Поглощение коэффициент поглощения

Спектр поглощения



© 2025 Mash-xxl.info Реклама на сайте