Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационный принцип при сложных граничных условиях

Определение тепловых перемещений и напряжений в теле путем непосредственного интегрирования соответствующих дифференциальных уравнений и удовлетворения неоднородных граничных условий, вообще говоря, является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости, рассматриваемые в 2.4, с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам изотермической теории упругости [23]  [c.37]


Определение тепловых напряжений и перемещений в теле непосредственным интегрированием соответствующих дифференциальных уравнений при произвольных граничных условиях является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости ( 2.4), с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам решения задач изотермической теории упругости [34] методы, основанные на обобщенном на случай задачи термоупругости вариационном уравнении Лагранжа и выражениях, аппроксимирующих возможные перемещения, и методы, основанные на обобщенном на случай задачи термоупругости принципе минимума энергии деформации и выражениях, аппроксимирующих возможные напряжения.  [c.38]

Вывод уравнения (3.3) и граничных условий (3.4) и (3.6) для подвешенной нити с грузом и без него занял у нас немногим более двух страниц текста без сложных преобразований, в то время, как применение вариационного принципа Гамильтона — Остроградского к этой задаче занимает значительно больше места п требует применения более сложного аппарата.  [c.225]

Для решения более сложных задач широкое применение находят вариационные методы, сущность которых заключается в том, что система уравнений равновесия, условий шастичности и граничных условий заменяется эквивалентным ей принципом возможных перемещений. Использование данного метода возможно лишь при наличии данных (экспериментальных, численных и т.п ) о скоростях деформаций в различных точках исследуемой конструкции, необходимых для нахождения функции распределения скоростей деформации по сечению, отвечающему минимальному значению энергии деформации. Изложенный метод, с связи с этим, по с ти своей является приближенным, гюскольк минимизирующие функции подбираются эмпирически.  [c.99]

На основ.а йи подробно изученного примера кручения тел видим, что прн аппроксимирующих функциях, заранее удовлетворяющих условию минимума потенциальной энергии тела или граничным условиям на поверхности его, можно получить не только уточненные решения, но даже точные в строгом смысле или в смысле Сен-Венана. Таким образом, подчиняя заранее аппроксимирующие функции условию равновесия внутри выбранного элемента, например на основании вариационного принципа Кастилиано, или граничным условиям на части поверхности тела согласно уравнениям равновесия на поверхности, мы можем резко уменьшить число аппроксимирующих функций, достигая при этом результатов с высокой степенью точности. Выбор аппроксимирующих функций из условия равновесия на поверхности, т. е. по способу Галеркина, можно рекомендовать для тел простой формы, особенно с постоянным поперечным сечением, что достигается с помощью криволинейных координат. Нахождение аппроксимирующих функций из условия минимума потенциальной энергии (В сечении тела, т. е. по способу Треффца, эффективно как для простых, так и для сложных по конфигурации тел.  [c.58]



Смотреть страницы где упоминается термин Вариационный принцип при сложных граничных условиях : [c.137]   
Вариационные принципы теории упругости и теории оболочек (1978) -- [ c.146 , c.169 ]



ПОИСК



Граничные условия

Принцип вариационный

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте