Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические потери и молекулярная масса

Определение механических потерь может служить эффективным методом определения молекулярной массы полимеров, состава сополимеров, степени неоднородности сшивания, влияния термообработки на морфологию кристаллов в кристаллических полимерах, состава смесей полимеров и блок-сополимеров, степени отверждения термореактивных смол.  [c.92]

Влияние температуры на модуль упругости типичных полимеров уже обсуждалось в гл. 2. Следует повторить, что в области стеклования наблюдается резкое падение модуля. Молекулярная масса полимера, частота поперечного сшивания, кристаллизация, пластификация и другие факторы определяют конкретную форму зависимости модуля упругости от температуры. Кривые динамический модуль—температура в принципе аналогичны графикам, приведенным в гл. 2. В динамических методах измерения частота (временная шкала испытания) должна быть постоянной при изменении температуры. На рис. 4.1 показано влияние частоты на температурные зависимости модуля и показателя механических потерь. Сдвиг кривых при изменении частоты зависит от абсолютной величины Тс и энергии активации АЯ. При возрастании частоты на один десятичный порядок смещение, точки перегиба на зависимости модуля или положения максимума механических потерь по температурной шкале от Т1 до Т (в К) можно рассчитать по формуле  [c.92]


Механические потери при Т > также резко зависят от молекулярной массы (рис. 4.17). Величина минимума при Т > уменьшается с ростом молекулярной массы [1,129—133 ]. Минимум наблюдается вблизи центра плато высокоэластичности, где на температурной зависимости модуля имеется перегиб. В работе  [c.106]

Измерения вязкости аморфного полимера с молекулярной массой 2 10 при температуре выше показали, что молекулярная масса отрезков цепей между зацеплениями, составляет 2х X 10 . Чему равна величина tg б в точке минимума механических потерь при Т > Т,,  [c.143]

Известно очень мало данных о влиянии химической и физической структуры полимеров на их выносливость. Влияние некоторых структурных факторов на механические потери полимеров рассмотрены в гл. 4. Однако практически не установлено никакой связи между химической и молекулярной структурой полимеров и условиями образования и прорастания трещин. Связь между образованием трещин и наличием неоднородностей структуры и дефектов коротко рассмотрена в гл. 5. Обычно факторы, повышающие прочность полимеров, обусловливают также возрастание выносливости. Так, при увеличении молекулярной массы полимеров их выносливость возрастает до определенного предела [47, 48]. Выносливость повышается также при уменьшении вероятности образования микротрещин, например при ориентации в направлении, параллельном прикладываемому напряжению [49]. Ориентация заметно влияет на выносливость деталей из полипропилена, получаемых литьем под давлением и подвергаемых при эксплуатации многократному изгибу. Поскольку выносливость в решающей степени определяется прорастанием трещин, надрезы и царапины на образцах могут вызвать резкое уменьшение выносливости, особенно в материалах, чувствительных к надрезам. В полимерных волокнах и вулканизованных каучуках усталостное разрушение сопровождается разрывом полимерных цепей и образованием свободных радикалов.  [c.206]

Межслоевая прочность при сдвиге 273 Механические испытания 14 сл. Механические потери 19 сл., 92 сл. влияние ориентации 123—125" и молекулярная масса 106 в наполненных полимерах 246, 247 и пластификация 116—120 и степень сшивания 108—112 и термическая обработка 103 и трение 208  [c.307]

Мощность механических потерь зависит также от таких факторов, как давление рабочего тела и количество масла в картере двигателя. Давление рабочего тела и его молекулярная масса влияют на вентиляционные потери, а количество масла определяет энергию, затрачиваемую на взбалтывание масла, так как смазка двигателя очень часто осуществляется методом разбрызгивания.  [c.120]


На рис. 4.21—4.23 показаны типичные зависимости динамических механических свойств от частоты узлов сетки густосетчатых полимеров [140, 147]. При температуре выше с увеличением частоты узлов сетки динамический модуль упругости резко возрастает, а пик механических потерь становится ниже и шире [113, 140, 145, 147—155]. При очень высокой частоте узлов сетки Тс или исчезает, или становится выше температуры деструкции полимера. Предполагается, что расширение области релаксационного перехода с увеличением частоты узлов сетки связано с увеличением ширины распределения молекулярной массы цепей между узлами сетки или появлением каких-либо других неравномерностей структуры сетки [148]. Мэйсон предположил, что это расширение связано с расширением распределения свободного объема мономерных звеньев [152].  [c.111]

Для контроля правильности результатов испытаний свойств продукции механических и физико-химических (плотность, прочностные показатели, температурный коэффициент расщирения, когезия, вязкость, жесткость, среднечисленная молекулярная масса, молекулярно-массовое распределение и др.) тепловых (удельная теплоемкость, коэффициент теплопроводности и др.) электрических (удельное объемное сопротивление, диэлектрическая проницаемость, тангенс угла диэлектрических потерь, электрическая прочность и др.) прочих характеристик (коэффициент диффузии, растворимость и проницаемость газов, показатель преломления и др.). Для последних задач возможно применение СО свойств, имеющих общее назначение (т. е. для контроля свойств не только каучуков или резин, но и других веществ). Однако нередко особенности агрегатного состояния и условий испытаний вынуждают применять специализированные образцы.  [c.55]


Смотреть страницы где упоминается термин Механические потери и молекулярная масса : [c.106]    [c.345]   
Механические свойства полимеров и полимерных композиций (1978) -- [ c.106 ]



ПОИСК



Молекулярные массы

Молекулярный вес

Потери массы

Потери механические



© 2025 Mash-xxl.info Реклама на сайте