Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Петля гистерезиса в для ферромагнетика

Необратимость при смещении границ доменов. Наличие в ферромагнетике различного рода неоднородностей — примесей, немагнитных включений, напряженных областей и т. д. может оказывать сильное влияние на энергию стенок Блоха, повышая или понижая ее, т. е. создавая для этих стенок потенциальные ямы, которые они проходят при своем смещении на первой стадии намагничивания. При размагничивании часть стенок может застревать в этих ямах, вследствие чего домены, которые были намагничены вдоль поля, сохраняются и после снятия его, вызывая остаточную намагниченность Вг (рис. 11.3). Для уничтожения этой намагниченности необходимо действие поля // противоположного направления. Регулируя факторы, определяющие кривую намагничивания и размагничивания, можно в широких пределах менять форму и размеры петли гистерезиса. В однородных ферромагнетиках, содержащих минимальное количество дефектов, петля гистерезиса может быть очень узкой.  [c.299]


Для диамагнетиков х <0. для парамагнетиков % >0. Для особой подгруппы ферромагнетиков это простое соотношение (170) не соблюдается, и функциональная зависимость М от Н имеет нелинейный характер и не является однозначной. Все ферромагнетики имеют характерную кривую намагничивания и петлю гистерезиса. Магнитная восприимчивость ферромагнетиков зависит от напряженности внешнего поля в то время как для диамагнетиков и парамагнетиков х почти не зависит от Я. С другой стороны, парамагнетизм и ферромагнетизм в отличие от диамагнетизма зависят от температуры, возрастая с ее понижением. Выше температуры точки Кюри ферромагнетики становятся парамагнетиками для каждого вещества имеется своя точка Кюри .  [c.129]

Коэрцитивная сила и форма петли гистерезиса характеризуют свойство ферромагнетика сохранять остаточное намагничивание и определяют использование ферромагнетиков для различных целей. Ферромагнетики с широкой петлей гистерезиса называются жесткими магнитными материалами (углеродистые, вольфрамовые, хромовые, алюминиево-никелевые и другие стали). Они обладают большой коэрцитивной силой и используются для создания постоянных магнитов различной формы (полосовых, подковообразных, магнитных стрелок). К мягким магнитным материалам, обладающим малой коэрцитивной силой и узкой петлей гистерезиса, относятся железо, сплавы железа с никелем. Эти материалы используются для изготовления сердечников трансформаторов, генераторов и других устройств, по условиям работы которых происходит перемагничивание в переменных магнитных полях. Перемагничивание ферромагнетика связано с поворотом областей самопроизвольного намагничивания (п. 8°). Работа, необходимая для этого, совершается за счет энергии внешнего магнитного поля (П1.5.7.2°). Количество теплоты, выделяющейся при пере-магничивании, пропорционально площади петли гистерезиса.  [c.283]

Измеряя намагниченность вдоль оси в направлении длины аморфной ленты (в дальнейшем для краткости будем говорить просто ось ленты ), можно наблюдать явление магнитного насыщения и петлю гистерезиса, точно такие же, как и в обычных кристаллических ферромагнетиках. Отсюда следует, что в аморфных металлических лентах внутренняя намагниченность разбита на части — магнитные домены. Предполагают, что намагничивание аморфных металлов происходит путем перемещения границ магнитных доменов и вращения вектора спонтанной намагниченности.  [c.125]

Самопроизвольная поляризация наблюдается только у одного класса диэлектриков — сегнетоэлектриков. При охлаждении сегнетоэлектрика ниже определенной температуры, которую называют точкой Кюри, самопроизвольно, без внешних воздействий, возникает поляризация. Объем сегнетоэлектрика разбивается на домены, в каждом из которых вещество сильно поляризовано. В отсутствие поля домены расположены беспорядочно, и суммарная поляризация Р равна нулю. При наложении поля поляризация увеличивается нелинейно благодаря переориентации доменов. При циклическом изменении поля от +Е т -Е возникает петля гистерезиса (рис. 18.23). Когда напряженность поля возрастает, поляризация Р достигает насыщения при этом е увеличивается до максимального значения и вновь уменьшается. По аналогии с ферромагнетиками напряженность поля Ес, при которой меняется направление поляризации, называется коэрцитивной силой. Когда Ес < 0,1 МВ/м, сегнетоэлектрик является мягким когда Ес > 1МВ/м — жестким. Известно около 500 сегнетоэлектриков. Они принадлежат к классу активных диэлектриков, которые используются для генерации и преобразования электрических сигналов. Между электрическими, механическими, тепловыми и другими свойствами сегнетоэлектриков существуют нелинейные зависимости. Значения свойств вблизи точки Кюри имеют максимумы или минимумы. В частности, максимальное значение е достигается около точки Кюри.  [c.601]


Если намагниченный до насыщения образец начать размагничивать, уменьшая внешнее поле Я, то изменение намагниченности будет описываться уже другой кривой (рис. 4.9). Из-за необратимого смещения границ доменов при Н-О сохраняется некоторая намагниченность М называемая остаточной. Для достижения нулевой намагниченности необходимо приложить размагничивающее поле противоположной направленности Не, называемое коэрцитивной силой. При достижении больших значений размагничивающего поля образец намагничивается до насыщения в противоположном направлении. Последующее размагничивание уже этого направления происходит по аналогичной кривой, симметричной предыдушей относительно точки М = 0 Я = 0). В результате полный цикл перемагничивания при изменении поля от - Ятах ДО Ятах описывается петлей гистерезиса (ПГ) (рис. 4.9). Петля гистерезиса наглядно показывает, что процесс размагничивания отстает от уменьшения поля. Это означает, что энергия, полученная ферромагнетиком при намагничивании, не полностью отдается в процессе размагничивания. Часть энергии теряется. Теряемая за один полный цикл энергия в единице объема материала (потери на гистерезис) выражается формулой  [c.287]

Отметим, что по виду ПГ все ферромагнетики делятся на две большие группы магнитомягкие, имеющие Яс < 800 А/м, и магнитотвердые с Яс > 4 кА/м. Для характеристики магнитотвердых материалов пользуются понятием размагничивающей части петли гистерезиса, находящейся во втором квадранте координатной плоскости В(Н). Именно эта часть кривой определяет магнитную стабильность постоянного магнита. При наличии у постоянного магнита воздушного зазора остаточная индукция его < В остаточной индукции материала в замкнутой магнитной Цепи. Поэтому в качестве величины, характеризующей постоянный магнит, пользуются максимальным значением произведения (5Я) (рис. 4.13).  [c.289]

Коэрцитивная сила Щ от латинского соегс11ю — удерживание) — напряженность магнитного поля, необходимая для полного размагничивания предварительно намагниченного до насыщения ферромагнетика (получения 5 = О по предельной петле гистерезиса). Магнитные свойства ферромагнетиков (в первую очередь сталей) определяются их химическим составом. Так, введение никеля, марганца, углерода, азота и меди уменьшает начальную магнитную проницаемость )Хнач и повышает коэрцитивную силу Одновременное введение кремния, хрома, молибдена, ниобия, вольфрама и ванадия увеличивает л,,ач и уменьшает Между начальной магнитной проницаемостью и коэрцитивной СИЛОЙ Д. ДЛЯ стэлсй существует обратно пропорциональная зависимость. Так, для диапазона значений = 0, 2...5 кА/м и )1 = 10...270 установлена зависимость ( нач (0Л7Яг)- (см. Богачева Н. Д. Расширение возможностей применения метода коэрцитивной силы // В мире неразрушающего контроля. — М., 2005 г.—№ 2. — С. 8—10).  [c.102]

Кроме диа- и парамагнетиков существует большая группа веществ, обладающих спонтанной намагниченностью, т. е. имеющих не равную нулю намагниченность даже в отсутствие магнитного поля. Эта группа магнетиков получила название ферромагнетиков. Для них зависимость / (Я) является нелинейной функцией, и полный цикл перемагничения описывается петлей гистерезиса (рис. 10.2). В этих веществах магнитная восприимчивость сама зависит от Н.  [c.320]

Здесь ] — намагниченность, достигаемая при поле Н. Полная накопленная энергия пропорциональна площади заштрихованного участка на рис. 10.19,а. При уменьшении поля до нуля кривая /(Я) идет так, как показано на рис. 10.19,6. Выделяющаяся при размагничении энергия пропорциональна площади, заштрихованной на этом рисунке. Разность этих двух площадей, т. е. площадь, заштрихованная на рис. 10.19,6, пропорциональна энергии, оставшейся в ферромагнетике. Аналогичные рассуждения можно провести и для других участков петли гистерезиса. Таким образом, петля гистерезиса является очень важной характеристикой ферромагнитных материалов, так как она позволяет рассчитать энергетические потери в устройствах, в которых используются эти материалы.  [c.346]

На рис. 11.3 показана кривая полного цикла перемагничипания ферромагнетика. Из рис. 11.3 видно, что при перемагничивании изменение В отстает от изменения Я и при Я = О оказывается равным не нулю, а Явление такого отставания В от Н называют магнитным гистерезисом, а индукцию Sr — остаточной индукцией или остаточным магнетизмом. Для ее уничтожения требуется приложение размагничивающего поля которое называют коэрцитивной силой. Замкнутая петля ABj-H A В Н А, описывающая цикл перемагничивания, называется петлей гистерезиса. Площадь петли пропорциональна работе перемагничивания единицы объема ферромагнетика. В процессе перемагничивания эта работа целиком переходит в тепло. Поэтому при многократном перемагничивании ферромагнетики нагреваются.  [c.287]


Благодаря основному отличительному свойству — петле гистерезиса — сегнетоэлектрики можно применять в запоминающих устройствах (ЗУ) ЭВМ аналогично ферромагнетикам (см. ч. V). Использование сегнетоэлектриков открывает широкие возможности для твердотельного интегрального исполнения ЗУ. Так как основным требованием к материалам для ЗУ является прямоугольность петли гистерезиса, то соответствующие материалы называют сег-нетоэлектритми с ППГ.  [c.215]

Одним нз возможных способов решения уравнения (3.3) является применение методов Фурье при условии, что во всех расчетах проницаемость ферромагнетика предполагается постоянной (и = соп51). Расчет можно произвести сравнительно просто и без указанного ограничения, если рассматриваемый ферромагнетик имеет прямоугольную петлю гистерезиса. Для такого случая известно решение, предложенное В. К. Аркадьевым [116]. Нашу задачу также можно приблизить к случаю, рассмотренному В. К. Аркадьевым. Для этого будем считать, что намагничивающее  [c.94]


Смотреть страницы где упоминается термин Петля гистерезиса в для ферромагнетика : [c.303]    [c.45]    [c.157]    [c.101]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.312 ]



ПОИСК



Гистерезис

Петля

Петля гистерезиса

Ферромагнетики



© 2025 Mash-xxl.info Реклама на сайте