Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент неравномерности выгорания

Глубина выгорания и неравномерность энерговыделения в активной зоне. Из-за неравномерности нейтронного потока и несовершенства регулирования в активных зонах ядерных реакторов имеет место значительная неравномерность энерговыделения по высоте и диаметру зоны и по отдельным ТВС и твэлам. Поэтому локальные значения глубины выгорания топлива различаются между собой в несколько раз. Предельные (максимальные) значения а акс, на которые должна быть рассчитана работоспособность твэлов и ТВС, определяются с учетом неравномерности энерговыделения по активной зоне в целом. Отличие Омакс от а в выгружаемом топливе зависит также от размера одновременно выгружаемой партии. Если будет выгружаться одновременно вся активная зона, тогда коэффициент неравномерности выгорания топлива в чей будет максимальным. Но практически перегружается лишь часть активной зоны (например, в реакторах ВВЭР-440 1/3 зоны в год). В реакторах канального типа одновременно перегружается только несколько каналов. В этом случае неравномерность выгорания топлива в выгружаемых ТВС будет минимальной ( 1,1—1,2) и величина Омакс будет определяться в основном неравномерностью выгорания по высоте ТВС. В ТВС мощных реакторов типа PWR или ВВЭР, содержащих большое число твэлов (свыше 200), в отдельных группах твэлов проявляется не только осевая, но и радиальная неравномерность выгорания топлива, связанная с их расположением в сборке. Таким образом, средняя глубина выгорания является расчетной величиной, характеризующей энергетическую эффективность использования топлива в данном реакторе. Она может существенно отличаться от фактического максимального (минимального) значения а. Максимальная глубина выгорания Омакс — это величина, определяющая требования к надежности и работоспособности твэлов и ТВС.  [c.102]


Реальная структура активных зон энергетических реакторов неоднородна. Это обусловлено желанием уменьшить коэффициенты неравномерности энерговыделения (повысить среднюю удельную энергонапряженность) и увеличить среднюю глубину выгорания выгружаемого топлива (снизить топливную составляющую в эксплуатационных затратах). Коэффициент неравномерности энерговыделения по высоте энергетических реакторов не намного меньше, чем для реактора без отражателя. Коэффициент неравномерности энерговыделения по радиусу регламентируется Госатомнадзором РФ и должен быть не выше 1,35 при работе на номинальной мощности.  [c.139]

В соответствии с общей схемой ИТС, DT-топливо помещается в сферическую капсулу, в которой оно подвергается сжатию до колоссальных плотностей (300-1000) г-см за счет импульса давления, обеспечиваемого внешним источником энергии — драйвером. В момент наибольшего сжатия достигаются необходимые условия по плотности и температуре вещества и происходит зажигание топлива, т.е. начинает идти ядерная реакция синтеза D+T с выделением энергии в виде нейтронов и а-частиц. Нейтроны покидают зону реакции, а а-частицы тормозятся и отдают свою энергию топливу, содействуя развитию самоподдерживающегося процесса горения. Для этого необходимо, чтобы оптическая толщина сжатого топлива pR R — радиус сжатого топлива) превосходила универсальное значение, рЯ 0,5 г-см , определяемое пробегом а-частиц с энергией 3,5 МэВ, темпом лучистых потерь энергии из DT-плазмы и критерием инерциального удержания. В этих условиях заряженные продукты реакции синтеза — а-частицы, передают значительную часть своей энергии плотной плазме и процесс горения происходит при температурах 30-100 кэВ, соответствующих максимальным значениям скорости DT-реакции. Прежде чем реагирующее топливо разлетится под действием сил гидродинамического давления за время 10" с, должно прореагировать 30% массы DT. Таким образом, требование сильного сжатия термоядерного топлива обусловлено необходимостью получения значительного коэффициента выгорания и большого коэффициента термоядерного усиления энергии G (см. гл. 3.) при относительно малой (не более нескольких миллиграмм) массе DT-топлива. Проблема равномерности сжатия топлива в ИТС является ключевой. В настоящее время установлены весьма жесткие требования к симметрии обжатия топливной капсулы — допускается неравномерность в пределах 1% [1]. Такая задача решается двумя способами  [c.17]

На рис. 1.4 показано распределение тепловыделения по радиусу активной зоны, пронормироаанного к среднему значению, равному 1, для двух вариантов двухзонного профилирования. Как видно из рисунков, коэффициент неравномерности во втором варианте больше, чем в первом, что объясняется слишком большой разницей в обогащении топлива. Глубина выгорания в центральной зоне увеличивается, а в периферийной —  [c.21]


В большинстве конструкций тормозов находит применение сухое трение фрикционных материалов по металлу, и только в некоторых конструкциях осевых тормозов необходима смазка трущихся поверхностей. Условия работы тормозных устройств различных машин весьма разнообразны как по режиму работы, так и по величинам скоростей скольжения, давлений и температур. В некоторых наиболее легких условиях работы до сих пор еще находят применение в качестве фрикционного материала колодки из дерева несмолистых пород. В качестве рабочей поверхности используют обычно торец дерева. Эти колодки обеспечивают достаточно высокий коэффициент трения, но имеют весьма низкую теплостойкость. При высоких температурах, развивающихся при трении, трущаяся поверхность таких колодок обугливается, что приводит к резкому изменению коэффициента трения. В целях предотвращения обугливания дерево рекомендуется пропитывать под высоким давлением сернокислым или фосфорнокислым аммонием. К недостаткам деревянных колодок относятся, кроме того, неравномерность изнашивания торцов вследствие неодинаковой плотности слоев дерева, а также большая гигроскопичность деревянных колодок и их способность коробиться и растрескиваться. Однако благодаря дешевизне этого материала, а также простоте изготовления деревянные колодки находят еще довольно широкое применение (например, в тормозах трамваев, подвесных канатных дорог и фуникулеров и т. п.). В ряде случаев в качестве фрикционного материала применяется текстолит, удовлетворительно работающий при температурах до 100° С. При нагреве сверх 120° С вследствие неравномерного выгорания пропитки и образования быстроизнашиваемых вздутий текстолитовые накладки быстро портятся. В настоящее время отечественная химическая промышленность выпускает большое количество разнообразных фрикционных материалов, весьма сложных по своему составу, обладающих различными фрикционными свойствами и предназначенных для различных условий применения.  [c.526]

Однако распределение энерговыделения по объему активной зоны и по отдельным ТВС в условиях эксплуатации не остается постоянным и меняется во времени вследствие выгорания, перегрузок топлива, изменений режима нагрузки, управляющего воздействия органов регулирования и т. п. Поэтому следует различать так называемые мгновенные , т. е. текущие, значения коэффициентов неравномерности kr и kz, которые ограничивают предельно допустимый уровень тепловой мощности отдельной ТВС и реактора в делом, и средние по времени кг и kz, которые определяют неравномерность выгорания и энерговыработки по ТВС.  [c.107]

Среднее по времени за период кампании топлива значение фактически полученного объемного коэффициента неравномерности kv в единовременно выгружаемой из реактора партии топлива характеризует эффективность использования топлива, т. е. отличие значения В от максимальной проектной глубины выгорания, на которую рассчитаны твэлы.  [c.108]

Такая характеристика процесса горения является общей при сжигании перемешанной смеси как на воздушном окислителе (при Цв = 1Д и выше), так и на комбинированном окислителе с раздельным вводом кислорода (при Пв = ОД 0,6). Этот вывод подтверждается более равномерным распределением концентраций и температур но сечению камеры сгорания (рис. 36). При горении неперемешанных смесей (диффузионный режим) выгорание горючих элементов и распределение температур по сечению неравномерны, а локальные коэффициенты избытка воздуха существенно отличаются от среднего (рис. 36).  [c.88]

ВТИ-2 с проверочным анализом на содержание Н2 и СН4 при помощи переносного электрического газоанализатора типа ПГФ-П. Снятые поля позволили установить, что в непосредственной близости от кратера горелки наблюдается значительная неравномерность состава как по степени выгорания, так и по избыткам воздуха. Однако уже на расстоянии около 1 м от кратера концентрационные кривые имеют в различных точках сечения гораздо более ровный характер, а на расстоянии 1,5 м имеет место практически полное горение при значениях коэффициента избытка воздуха 1,06—1,10. Объемное теплонапряже-ние зоны горения составляло около 5 млн. ккал м ч.  [c.177]


Смотреть страницы где упоминается термин Коэффициент неравномерности выгорания : [c.23]   
Экономика ядерной энергетики Основы технологии и экономики производства ядерного топлива (1987) -- [ c.102 ]



ПОИСК



Коэффициент неравномерности

Неравномерность

Неравномерность Коэффициент неравномерности



© 2025 Mash-xxl.info Реклама на сайте