Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Логические пробники

По-видимому, первыми образцами приборов, специально предназначенных для поиска неисправностей в цифровых схемах, были логический пробник, логический пульсатор, индикатор тока и логический компаратор. За исключением логического компаратора, они применяются либо для возбуждения,, либо для контроля отдельных узлов в логической системе и помогают определить логическое состояние узла и его работоспособность. Ручные средства применяются в отдельности при проверке системы или совместно для реализации  [c.90]


Логический пробник контролирует поведение одной точки в системе и с помощью нескольких индикаторов сообщает пользователю о том, находится проверяемая точка в состоянии логической 1, состоянии логического  [c.92]

Логический пробник для исследования ТТЛ-схем должен различать три возможных состояния схемы —  [c.94]

Универсальный логический пробник должен работать с ТТЛ- и КМОП-схемами, хотя во многих системах, построенных на основе КМОП-схем, применяется питание 5 В. Пробник должен индицировать логические состояния ВЫСОКИЙ и НИЗКИЙ, а также плохие уровни, включая выходы с разрывом и выходы типа открытого коллектора без нагрузочных резисторов. Кроме индикации статических состояний пробник должен показывать пользователю также динамическое поведение узла.  [c.95]

Рис. 5.3. Простой логический пробник Рис. 5.3. Простой логический пробник
Логические пробники варьируются от простых устройств до сложных приборов, содержащих специально для них разработанные микросхемы. На рис. 5.3 показана схема логического пробника, предназначенного для проверки ТТЛ-схем.  [c.96]

Промышленные логические пробники  [c.97]

Использование логического пробника  [c.99]

Главное назначение логического пробника — проверить подачу питания на микросхемы, проконтролировать статические уровни в логических элементах на правильность функционирования и установить наличие импульсов в проверяемых цепях.  [c.99]

С помощью логического пробника удобно проверить наличие питания на микросхемах. Почти во всех ГТЛ-элементах питание Усе=5 В обычно подается на вывод 14 (корпус DIP с 14 выводами) или на вывод 16 (корпус DIP с 16 выводами). Земля обычно подается на выводы 7 и 8 соответственно. Впрочем, имеются и исключения из приведенных правил, например микросхема десятичного счетчика 7490, но в подавляющем большинстве ТТЛ-микросхем правила соблюдаются. Если коснуться зондом пробника выводов 14 и 16, его индикатор при наличии питания ярко засветится. Конечно, пробник не показывает значения напряжения питания, а просто сигнализирует о наличии электропитания фактическое значение напряжения питания можно измерить с помощью цифрового вольтметра. Когда.же зонд пробника касается выводов 7 или 8, индикатор должен быть выключен. Если в любом случае индикатор светится вполнакала , следует предположить обрыв цепей, и необходимо просмотреть печатные проводники от выводов микросхемы к блоку питания.  [c.99]

С помощью логического пробника можно проверить правильность функционирования логического элемента.  [c.100]


Общий метод контроля логических схем, при котором применяются логический пробник и логический пульсатор, называется тестированием стимул — реакция . С помощью пульсатора в узел вводится стимулирующее воздействие, а получающаяся реакция логической схемы прослеживается логическим пробником. Зная проверяемую схему, исследователь может проследить логическим пробником тракт распространения сигнала.  [c.106]

В общем, индикатор тока обнаруживает наличие импульсов в схеме хуже логического пробника, так как им труднее пользоваться. Однако для некоторых видов отказов эквивалентной замены индикатору тока нет и применение его экономит много времени. Во многих ситуациях, например при коротком замыкании на землю внутри ИС, уровень протекающего тока оказывается статическим, и при помощи одного индикатора его обнаружить невозможно. Для решения этой проблемы индикатор часто применяется вместе с логическим пульсатором, который стимулирует неисправную линию, а вызываемые пульсатором изменения тока обнаруживаются индикатором.  [c.111]

Логические пробники и пульсаторы, индикаторы тока и логические компараторы продолжительное время доминировали в качестве инструментальных средств поиска неисправностей в цифровых схемах. Однако им свойственны ограничения в том смысле, что пульсатор может возбуждать одновременно только ограниченное число узлов в системе, а логический пробник проверяет только один узел. Пробник может дать полезную информацию о статическом состоянии узла или показать наличие импульсов в цепи, однако он не может дать содержательной информации о последовательностях импульсов. Ручные инструментальные средства играют важную роль при анализе отказов в обычных логических схемах, но они почти бесполезны при анализе систем с шинной структурой, где информация обновляется последовательно во времени на большом числе линий одновременно. Чтобы разобраться в работе микропроцессорной системы, исследователю требуются приборы, которые фиксируют и индицируют в удобной форме информацию со многих линий и могут выделить нужную ему информацию. Очевидно, что простым инструментальным средствам такие функции недоступны, что привело к необходимости разработки аппаратуры, предназначенной для поиска неисправностей в сложных системах с шинной структурой.  [c.118]

Как упоминалось выше, двоичные индикаторы удобны для контроля замыкания линий на землю (постоянный 0) или на питание (постоянная 1). В этом смысле они действуют как логический пробник, который хранит много прошлых событий, а не просто показывает текущее событие.  [c.143]

При проведении любого теста с применением сигнатурного анализа необходимо решить, какие сигналы от проверяемой системы следует использовать в, качестве сигналов пуска, останова и синхронизации. В промышленных сигнатурных анализаторах зонд для касания узла имеет логический пробник, который дает визуальную индикацию активности. Конечно, индикатор пробника не дает возможности определить природу действий в узле, но он показывает наличие или отсутствие сигналов в проверяемом узле.  [c.183]

Необходимость учета тестирования при разработке систем связана с требованием введения соответствующих контрольных точек. Для тестирования схемных плат, смонтированных в стойках, следует предусмотреть платы удлинителей. Необходимо также сконструировать удобные средства для подачи электропитания в логический пробник, В документации на систему целесообразно показать типичные формы сигналов, которые можно проверить обычным осциллографом.  [c.224]

По образцам техно логической пробы, внешний осмотр контроль щупом местное приподнимание кромки детали пробником измерение диаметра отпечатка электрода. Рентгеновское просвечивание. По приборам, контролирующим параметры процесса сварки  [c.105]

О или имеет промежуточный уровень. Большинство пробников показывают наличие также импульсов в точке схемы вспышками одного из индикаторов. Для показа логического состояния точки применяются либо отдельные индикаторы, либо один индикатор, который ярко светится в состоянии логической Т и выключен в состоянии логического 0. Если проверяемый узел имеет искаженный логический уровень (завышенный О или заниженная 1), единственный индикатор светится вполнакала.  [c.92]

О и напряжение внутри области неопределенности. Для достижения универсальности пробник должен проверять и КМОП-схемы, логические пороги которых отличаются от порогов ТТЛ-схем. В отличие от ТТЛ-схем, работающих с фиксированным напряжением питания 5 В, КМОП-схемы могут работать при напряжении питания в диапазоне 3—18 В. Пороговые уровни и границы  [c.94]


Выход верхнего операционного усилителя переходит из состояния логического О в состояние логической 1, когда входное напряжение превышает 2 В. Выход нижнего операционного усилителя изменяется из состояния логического О в состояние логической 1, когда входное напряжение пробника ниже 0,8 В. Если вход пробника свободен, выходы обоих операционных усилителей нахо дятся в состоянии логического О, что вызывает включение желтого светодиода, показывающего плохой уровень. Когда напряжение на входе больше 2 В, желтый  [c.96]

Для проверки схемы, приведенной на рис. 5.10, на вход элемента с уровнем логического О подаются сигналы от пульсатора и пробником проверяется выход Сь чтобы убедиться в правильной работе элемента. Пульсатор можно оставить на входе элемента или перенести на его выход и коснуться пробником входа элемента. Сг. Если в соединяющей элементы линии есть разрыв, пробник показывает плохой логический уровень и не реагирует ни на какие стимулы пульсатора.  [c.106]

До взятия сигнатур от узлов в системе сам сигнатурный анализатор и подключения входных сигналов контролируются по сигнатурам земли и питания V - Регистр сдвига в анализаторе инициализируется на нуль до регистрации любых данных. Когда пробник касается земли, вход данных всегда находится в состоянии логического О, которое не изменяет начального состояния реги-  [c.183]

Узел обработки битов 304 Уильямс, Стивен 320 Ультрафиолетовое излучение 31 Умножение с накоплением 78 Умножители встроенные 77 Управляемый пробник 372 Уровень абстракции логических вентилей 137 Уровень регистровых передач, см. УРП Уровень транзисторных ключей 137 УРП 137  [c.406]

В гл. 5—8 описываются приборы, ориентированные на цифровые системы. В гл. 5 речь идет о таких, простейших приборах, как логические пробники, логические пульсаторы, индикроры тока и логические компараторы. Дано описание принципов их работы и способов применения в типичных ситуациях. Анализ ограничений этих простых средств служит введением для последующих  [c.7]

Кроме перечисленных логического пробника, пульсатора и индикатора тока имеются логические клипсы и компараторы. Они применяются для функционального контроля одной микросхемы при работе ее в системе. Логическая клипса надевается на проверяемую ИС и получает питание от вывода самой ИС. Логическая схема внутри клипсы определяет полярность питания, а светодиоды на торце клипсы показывают логические состояния, выводов ИС. Логическая клипса может проверять одно логическое семейство, например ТТЛ, и даже с ограничениями внутри семейства из-за большого разнообразия способов подключения питания и значительного числа типов корпусов ИС. Например, клипса может проверять ИС в корпусах тира DIP (с двусторонним расположением выводов), имеющих 14 или 16 выводов. Даже среди микросхем с такими корпусами клипса может проверять не все микросхемы. Внутри клипсы имеется схема с довольно ограниченными возможностями, поэтому быстрые импульсные события на выводах проверяемой микросхемы нельзя видеть на светодиодах, индицирующих состояния этих выводов. Большинство ограничений, свойственных логической клипсе,-устранено в логическом компараторе, который воспринимает сигналы от проверяемой микросхемы через пассивную клипсу и плоский кабель. В компаратор помещается ИС, аналогичная проверяемой, и любые различия в работе двух микросхем индицируются на светодиодах. Обе микросхемы работают параллельно, но выходы микросхемы, находящейся в компараторе, действуют только в самом компараторе для получения и последующей индикации сигналов правильно/неправильно . Обычно логические компараторы оснащаются платой персонификации для каждой проверяемой микросхемы эта плата настраивает прибор и дает информацию о выводах питания, входах и выходах. Логический компаратор универсальнее логической клипсы и может проверять большинство микросхем семейства элементов при наличии панелек для эталонных микросхем и кабелей для разных типов корпусов.  [c.91]

Несколько фирм предлагают логические пробники, которые могут обнаруживать одиночные импульсы длительностью до 10 НС и с частотой до 80 МГц. Коммутируемый пробник обеспечивает проверку схем, выполненных по технологиям ТТЛ, ДТЛ, РТЛ, МОП, КМОП и др. Примером логического пробника с такими возможностями служит пробник модели 545А фирмы Неш1е11-Pa kard. Он расширяет одиночные импульсы продолжительностью 10 НС и более до 50 мс для индикации на газоразрядной лампе, размещенной в его зонде. Интенсивность свечения этого единственного индикатора информирует пользователя об одном из трех состояний узла.  [c.97]

Рис. 5.5. Реакции на КМОП-сигналы логического пробника 545А (питание 5 В) Рис. 5.5. Реакции на КМОП-сигналы логического пробника 545А (питание 5 В)
Когда место на печатной плате ограничено, вместо попыток разместить на ней дополнительные микросхемы часто оставляют незадействованными (резервными) логические элементы в работающих микросхемах. Рассмот-зим, например, элемент исключающего ИЛИ на рис. 5.6., Ликросхема 7486 содержит в одном корпусе четыре таких элемента, из которых, возможно, задействованы только три. Если в системе потребуется инвертор, его можно реализовать с помощью резервного четвертого элемента микросхемы. Касание логическим пробником вывода 1 покажет ярким свечением индикатора состояние логической 1, а касание вывода 2 — наличие импульсов. Функция элемента должна быть такой, что на выходе должна получаться инвертированная входная последовательность, поэтому при касании пробником выхода также должно быть индицировано наличие импульсов. Тот факт, что последовательность импульсов инвертирована относительно входной, по индикатору логического пробника определить невозможно. Если вместо сигнализации о наличии импульсов на выходе элемента индикатор остается выключенным, то в схеме имеется отказ, которым может быть либо отказ в самом элементе, либо закорачивание на землю вне элемента. Короткое замыкание может быть вызвано либо неаккуратной пайкой, приводящей к соединению между линией с выхода элемента и землей, либо замыканием на землю входа внутри любой из микросхем, к которой подключен выход элемента. Для определения фактического отказа необходимо либо изолировать выходной вывод (см.  [c.100]


Б микропроцессорной системе логический пробник удобно применять для первоначального контроля статических логических уровней и проверки работоспособности шины. Следует проверить линии шины управления, чтобы убедиться в том, что отказ на одной из критических управляющих линий не препятствует работе системы, а это может случиться, если, например, на входе запроса прямого доступа к памяти (HOLD), имеющегося во многих микропроцессорах, постоянно действует низкий уровень. С помощью логического пробника можно проверить и целостность печатных проводников если, например, микросхема памяти не выбираете следует проверить наличие импульсов на ее входе СЕ (разрешение работы кристалла) и проследить по печатному проводнику до того выхода дешифратора адреса, на котором формируется сигнал СЕ. На печатных платах с высокой плотностью упаковки микросхем применяются очень узкие проводники, на которых могут появляться микроскопические разрывы. Ведя пробник по проводнику, можно обнаружить разрыв, незаметный для невооруженного глаза.  [c.101]

Логический пробник контролирует наличие уровней или импульсов только в одном узле схемы в дополнение к логическому пробнику разработан логический пульсатор, который стимулирует узел, вынуждая его переходить из одного состояния в другое. Логические пульсаторы — это схемные стимулирующие приборы, предназначенные для введения ( инжекции ) в узел коротких и мощных импульсов, которые переводят узел из одного состояния в другое и возвращают в первоначальное состояние. Обычно пульсатор генерирует импульс тока значением до 0,75 А в течение 300 не благодаря малой длительности импульсов ИС не повреждается. Выходной каскад пульсатора тристабильный, поэтому при обычных условиях касание зондом узла в схеме не влияет на его поведение. Подача одиночного и 1пульса в проверяемый узел осуществляется нажатием кнопки, находящейся на корпусе пульсатора. Зонд пульсатора оснащен индикатором, который вспыхивает  [c.101]

Возможности индикатора тока в поиске неисправностей менее очевидны, чем возможности логического пробника или логического пульсатора, так как он предназначен для прослеживаш1Я тока, а не привычных уровней напряжения,  [c.110]

Предположим, что один из выходных транзисторов элементов Сь Сг или Сз постоянно закорочен на землю. Тогда с помощью логического пробника можно убедиться, что узел всегда имеет низкий уровень независимо от состояний входов А—Р, но обнаружить отказавший элемент логическим пробником нельзя. Отказ может быть в любом из элементов С]—Сз, и, кроме того, это может быть короткое замыкание в элементе 64 или замыкание на землю самой линии.  [c.112]

Далее в документе находятся диаграммы разводки выводов всех микросхем, и у каждого вывода показана его сигнатура. Земля всегда имеет характеристическую сигнатуру 0000, которая приводится как GND. Чтобы показать, что сигнатура 0000 допустима для вывода и отличается от сигнатуры земли, после сигнатуры находится буква В. Она показывает, что светодиод, находящийся в зонде логического пробника, при взятии сигнатуры будет вспыхивать. Примером служит сигнатура у вывода 18 микросхемы ИС2. В режиме свободного счета сигнатуры на многих выводах ИС не имеют смысла и показываются на диаграммах в виде X (см. пример у вывода 3 ИС4), Еще одна часто встречающаяся ситуа-  [c.185]

На рис. 5.4 и 5.5 показаны реакции пробника модели 545А на различные входные сигналы ТТЛ- и КМОП-схем, работающих от напряжения электропитания 5 В. Пороговые уровни логической 1 и логического О находятся в небольших диапазонах напряжений около номинальных значений. Для ТТЛ-схем пороговый уровень логической 1 составляет 2+ В, а пороговый уровень  [c.97]

Пробник модели 545А обладает возможностью запоминания — светодиод, размещенный в корпусе пробника, включается, когда пробник обнаруживает изменение логического состояния. Имеющейся кнопкой можно сбросить этот индикатор, который вновь включится при обнаружении очередного изменения состояния. Индикатор удобен для фиксации одного или нескольких импульсов в тех случаях, когда неудобно наблюдать индикатор в зонде или когда рассматриваются редкие импульсы.  [c.99]

ЦИЯ отражена у вывода 1 ИС2. Здесь сигнатура равна 0000, но светодиод в зонде пробника не вспыхивает. Вывод 1 в данном тесте всегда имеет уровень логического О, который дает такую же сигнатуру, как и земля указание 0000 на диаграмме подчеркивает, что вывод ие закорочен на землю. Если вывод закорочен на землю, следует указывать ОКО.  [c.186]

Конечный автомат — функция (программная или аппаратная), которая может состоять из конечного множества состояний и переходить из одного состояния в другое. Контрольная сумма — итоговое значение процедуры проверки с помощью циклического избыточного кода ( R ), записанное в линейном сдвиговом регистре с обратной связью (LFSR) (или его программном эквиваленте). Также называется сигнатурой в средствах функциональной проверки с помощью управляемого пробника. Конфигурационные данные — биты в конфигурационном файле, которые используются для непосредственного определения состояния программируемых логических элементов. См. также Конфигурационные команды и Конфигурационный файл. Конфигурационные команды — набор инструкций в конфигурационном файле, которые указывают устройству на то, какие действия ему необходимо выполнить над конфигурационными данными. См. также Конфигурационные данные и Конфигурационный файл.  [c.385]


Смотреть страницы где упоминается термин Логические пробники : [c.92]    [c.98]    [c.105]    [c.110]    [c.184]    [c.97]    [c.98]   
Смотреть главы в:

Отладка микропроцессорных систем  -> Логические пробники



ПОИСК



Использование логического пробника

Использование логического пульсатора. . ЮЗ Тестирование стимул-реакция с помощью пульсатора и пробника

Логический

Промышленные логические пробники



© 2025 Mash-xxl.info Реклама на сайте