Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изменение свободной энергии при необратимых процессах . 33. Условия равновесия системы

Раздел 3 — Неравновесные состояния условия равновесия и их применение (возрастание энтропии при необратимом адиабатическом переходе из одного равновесного состояния в другое определение энтропии неравновесных состояний определение свободной энергии для равновесного состояния изменение энтропии при необратимых процессах изменение свободной энергии при необратимых процессах условия равновесия системы замечания, связанные с уточнением физического смысла законов термодинамики фаза условие устойчивости системы, состоящей из одной фазы фазовые превращения фазовые превращения первого рода уравнение Клапейрона — Клаузиуса равновесие трех фаз поверхность термодинамического потенциала критическая точка поверхностная энергия и поверхностное натяжение роль поверхностного натяжения при образовании  [c.364]


Таким образом, мы высказываем следующее предположение неполное равновесие является настоящим равновесием в системе с фиксированными внутренними параметрами. Чтобы его доказать, надо убедиться в применимости принципа необратимости к системам с фиксированными параметрами. Вряд ли есть основания сомневаться в этом. Однако нужно иметь в виду, что фиксирование внутренних параметров не должно быть таким, чтобы система фактически распалась на не связанные между собой части. Целесообразно различать случаи, когда скрытые движения совершенно не ограничены (в той мере, в какой это допускают фиксированные параметры), даже при неизменных механических параметрах отдельных частей системы, и случаи, когда отдельные части системы вообще изолированы друг от друга или могут передавать друг другу движение только при изменении механических параметров отдельных частей, т. е. через посредство механических систем. В первом случае мы будем называть систему термически однородной, а во втором — термически неоднородной. Термически однородная система с фиксированными параметрами полностью подчиняется принципу необратимости и переходит при неизменных внешних условиях в предельное состояние, которое будет для нее настоящим равновесием для системы со свободными внутренними параметрами подобное состояние является неполным равновесием. Это неполное равновесие не зависит от начального состояния системы, если фиксированные параметры вначале имели нужные (фиксированные) значения. В неполном равновесии также не остается никакого следа от приведшего к нему процесса. Например, смесь определенных количеств молекул Н2 и Л2 можно взять в данном объеме и с данной энергией в самых разнообразных начальных состояниях молекулы смеси можно произвольно разместить в объеме, между ними можно самыми разнообразными способами распределить  [c.28]

Одно из наиболее глубоких следствий неравновесной термодинамики проявляется в дуалистичности необратимого процесса как разрушителя порядка вблизи равновесия и как создателя порядка вдали от равновесия. Для систем, далеких от равновесия, не выполняются общие экстремальные принципы, предсказывающие состояния, к которым переходят системы. В отсутствие принципа экстремумов, однозначно предсказывающего состояние, к которому стремится неравновесная система, заключается фундаментальное свойство неравновесных систем. В отличие от равновесных систем, которые переходят в состояние с минимальной свободной энергией, неравновесные системы могут развиваться непредсказуемо их состояние не всегда однозначно определяется макроскопическими уравнениями. Это происходит от того, что при одном и том же наборе условий неравновесная система может переходить к разным состояниям. Причиной тому могут быть флуктуации, малые неоднородности, дефекты или другие случайные факторы. К какому состоянию перейдет конкретная система, в общем случае предсказать невозможно. Новые состояния, достигаемые таким образом, являются часто упорядоченными состояниями , которые обладают пространственно-временной организацией. Вихри в потоках жидкости, неоднородности в концентрациях, представляющие собой геометрические формы с высокой степенью симметрии, или периодические изменения в концентрациях — вот примеры таких упорядоченных состояний. Фундаментальное свойство неравновесных систем проявляется в способности переходить в упорядоченное состояние в результате флуктуаций — т. е. осуществлять порядок через флуктуации [1, 2].  [c.404]



Смотреть главы в:

Введение в термодинамику Статистическая физика  -> Изменение свободной энергии при необратимых процессах . 33. Условия равновесия системы



ПОИСК



Необратимость

Процессы необратимые

Равновесие системы тел

Равновесие условие равновесия

Свободная энергия

Свободная энергия системы

Система свободная

Условие равновесия системы пар

Условия равновесия

Энергия изменения

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте