Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерения характеристик ионизирующего излучения

Измерения характеристик ионизирующих излучений  [c.643]

Единицы физических величин в области ионизирующих излучений. При переходе на единицы СИ в области измерений характеристик ионизирующего излучения изымаются единицы экспозиционной дозы — рентген, поглощенной дозы — рад, эквивалентной дозы —вэр, активности радионуклида — кюри.  [c.90]

При переходе на единицы СИ в области измерений характеристик ионизирующего излучения изымаются единицы экспозиционной дозы — рентген, поглощенной дозы — рад, эквивалентной дозы — бэр и активности радионуклида — кюри.  [c.62]


Единицы СИ в области измерений характеристик ионизирующего излучения приведены в табл. 2.12.  [c.69]

В СИ установлены семь основных единиц, используя которые, можно измерять все механические, электрические, магнитные, акустические и световые параметры, а также характеристики ионизирующих излучений и параметры в области химии. Основными единицами СИ являются метр (м) — для измерения длины килограмм (кг) — для измерения массы секунда (с) — для измерения времени ампер (А) — для измерения силы электрического тока кельвин (К) — для измерения температуры моль (моль) — для измерения количества вещества и кандела (кд) — для измерения силы света.  [c.116]

Единицы измерения ионизирующих излучений. Поле ионизирующих излучений определяют при помощи функций пространственно-энергетического и углового распределения плотности потока частиц или фотонов. Эти функции позволяют определить для любой точки пространства количество частиц или фотонов, распространяющихся в заданном направлении и имеющих заданную энергию. Кроме этих характеристик поля излучения пользуются плотностью потока и дозой излучения.  [c.149]

Обнаружение и регистрация излучения. Ионизирующее излучение обнаруживается и регистрируется по результатам его взаимодействия с материалом детектора. Одни детекторы предназначаются для измерения интегральных характеристик поля излучения и обычно используются в качестве дозиметров, другие измеряют поглощение энергии при отдельном акте взаимодействия и могут использоваться как спектрометры. Обнаружение и измерение активности и характеристик поля излучения являются самостоятельными разделами ядерной физики, их подробное изложение не входит в цели настоящей работы.  [c.116]

Расчеты защиты человека от ионизирующих излучений должны обеспечивать прогнозирование характеристик поля излучения, регламентируемых действующими нормативными документами (Санитарные правила проектирования и эксплуатации АЭС — СП АЭС—79, СП АС—88, Нормы радиационной безопасности и др.). Представляется разумным предположить, что погрешность расчетных оценок характеристик поля излучения за защитой должна быть не хуже приборных погрешностей регламентированных средств контроля радиационной обстановки. В противном случае для гарантированного соблюдения требований радиационной безопасности необходимо проектирование защиты с запасом, что сильно снижает их экономичность. Согласно СП АЭС—79 (и СП АС—88) радиационный дозиметрический контроль внешнего облучения человека (персонала) должен включать измерения индивидуальных доз, мощности дозы 7-из-лучения, плотности потока и мощности эквивалентной дозы нейтронов. Погрешности измерительных средств составляют 20—50%.  [c.289]


Допускаемые отклонения измеряемых значений метрологических характеристик устанавливаются по результатам испытаний нескольких образцов головной партии данного типа средств измерений, выполняемых по согласованной с органами государственной или ведомственной метрологических служб программе. Одновременно в процессе испытаний исследуется степень подверженности данного средства измерений воздействию влияющих факторов (атмосферного давления, влажности, ионизирующего излучения). Поверка средств измерений те.м-ператур производится по инструкциям или методическим указаниям, утвержденным Госстандартом СССР.  [c.52]

В соответствии с основным назначением аппаратуру радиометрического контроля относят к приборам, использующим ионизирующие излучения для измерения физических характеристик просвечиваемых объектов. По характеру измеряемой величины их подразделяют на толщиномеры и дефектоскопы. Кроме того, классификационными признаками являются  [c.103]

НПО ВНИИМ им. Д. И. Менделеева выполняет научные исследования и разработки с целью создания новых и совершенствования имеющихся первичных эталонов и прецизионных средств измерений, контроля и испытаний, улучшения их метрологических и эксплуатационных характеристик в следующих областях измерение ионизирующих излучений электромагнитные измерения механические измерения температурные и теплофизические измерения физико-химические измерения гидрофизические измерения  [c.217]

Как отмечалось выше, большое значение при измерении температуры в реакторах имеет вопрос стабильности градуировочных характеристик средств измерения в условиях ионизирующих излучений большой мощности. Термометры, расположенные в активной зоне, подвергаются воздействию нейтронного потока, осколков деления, электронов и других частиц, воздействию -излучения. В результате этого может происходить изменение структуры, состава и соответственно изменение физических свойств и метрологических характеристик термометров. В термоэлектрических термометрах под влиянием радиации могут возникать временные отклонения выходного сигнала и длительные, или интегральные, отклонения. Временные отклонения наблюдаются Б термометрах при воздействии излучения и исчезает при прекращении излучения при неизменной измеряемой температуре. Длительные или интегральные отклонения выходного сигнала термометра имеют место при длительном воздействии излучения, когда термометр набрал определенный флюенс излучения (количество ионизирующих частиц). Эти отклонения выходного сигнала термометра остаются и при прекращении излучения при постоянной измеряемой температуре. Интегральное отклонение вызывается, как правило, радиационным перерождением отдельных элементов, входящих в состав термоэлектродов. Это отклонение не может быть снято термообработкой электродов.  [c.77]

Количественная характеристика радиоактивного распада определяется активностью радиоактивного вещества, которая характеризуется числом распадов ядер атомов в единицу времени. В системе единиц СИ за единицу измерения активности радиоактивного распада принят один распад в секунду (с ), называемый беккерелем (Бк). Внесистемной, рю широко применяемой единицей является Кюри (Ки). Эта величина также служит мерой сравнения изотопов по ионизирующему действию их гамма-излучений. Известно, что г радия, очищенного от продуктов распада, за 1 с дает около 3,7-10 ° распавшихся ядер.  [c.94]

Для характеристики рентгеновского и гамма-излучения принято также понятие экспозиционной дозы, как количественная характеристика, основанная на ионизирующем действии этих излучений в сухом атмосферном воздухе, а характеристика выражается отношением суммарного электрического заряда ионов одного знака, образованного излучением, поглощенным в воздухе, к массе этого воздуха. За единицу измерения экспозиционной дозы принят кулон на килограмм (Кл/кг). Допускается также применение внесистемной единицы рентген 1Р = 2,57976-10" Кл/кг. Экспозиционная доза в 1Р создает при нормальных условиях в 1 см ионы, несущие одну электростатическую единицу количества электричества каждого знака (2,08-10 пар ионов). Поглощенная энергия в воздухе, соответствующая экспозиционной дозе 1Р, будет равна 0,88-10 Дж/кг.  [c.80]


В первом случае основным фактг1ром, определяющим степень изменения свойств данного материала, является интенсивность излучения во втором — суммарное количество энергии ионизируьэщего излучения, поглощенной единицей массы вещества за все время облучения --доз а. Для измерения дозы обычно пользуются несколькими величинами. Рентгеном (р) называется количество энергии или рентгеновского излучения, которое при поглощении ее 1 см сухого воздуха при 0 С и 760 мм рт. ст. приводит (в результате ионизации) к образованию одной электростатической единицы заряда обоих знаков. Физический эквивалент рентгена (фэр) соответствует поглощению одним граммом органического вещества (с плотностью, близкой к единице) приблизительно 94 эрг. Единицей измерения поглощенной энергии служит также рад, соответствующий поглоще]шю одним граммом вещества 100 эрг. Для измерения интенсивности ионизирующих излучений ядерного реактора служит характеристика потока нейтронов п о, определяемая как число нейтронов, проходящих через  [c.430]

ДОЗИМЕТРИЯ (от греч. dosis — доля, порция, приём и metreo — измеряю), измерение, исследование и теор. расчёты тех характеристик ионизирующих излучений (и их вз-ствия со средой), от к-рых зависят радиац. эффекты в облучаемых объектах живой и неживой  [c.181]

В соответствии с основным назначением аппаратуру радиометрического контроля относят к приОорам, использующим ионизирующие излучения для измерения "физических характеристик просвечиваемых объектов. По характеру измеряемой велнчииы их подразделяют на толщиномеры, и дефектоскопы. Кроме того, классификационными признаками являются условия измерения (поглощение излучения и его обратное рассеяние), вид используемого ионизирующего излучения (рентгеновские трубки, изотопные источники, ускорители) и конструктивно-эксплуатационные особенности.  [c.373]

При достаточно большой энергии электроны, атомы, ионы, ядерные частицы и фотоны ), поглощаясь в веществе, способны вызвать его ионизащш. Эта способность определяет количественные характеристики, способы регистрации и измерения и соответствующие единицы ионизирующих излучений. Поэтому, наряду с общими энергетическими величинами и единицами, применяют ряд специфических, которые включают в себя число ионизирующих частиц и их способность производить ионизацию. Большинство из этих единиц построены на базе единиц СИ и СГС, некоторые - внесистемные.  [c.322]

Единицы измерения ионизирующих излучений. Распространяясь в воздухе и различных объектах, ионизирующие излучения создают в пространстве вокруг источников излучения поле, полную характеристику которого дает так называемая функция про-странственно-энергетического и углового распределения плотности потока частиц или фотонов. Эта функция позволяет определить для любой точки пространства количество частиц или фотонов, распространяющихся в заданном направлении и имеющих заданную энер1ию. В радиационной дефектоскопии пользу ются также такими интегральными характеристиками поля излучения, как плотность потока и доза излучения.  [c.79]

Сегодня НИИИТ - одно из ведущих предприятий атомной отрасли по разработке методов, технических средств и автоматизированных телеметрических систем для измерения амплитудновременных характеристик электромагнитного, оптического, ионизирующих излучений и сейсмических волн. В Институте трудятся более 1100 сотрудников.  [c.342]

Для измерения ряда физических величин успешно применяют ионизирующие излучения, используя общие закономерности, связывающие изменения характеристик радиационного поля, создаваемого источником излучения. Эти характеристики (например, интенсивность потока частиц) измеряют детектором излучения. В качестве детекторов используют комбинации сцинтиллирующий кристалл — фотоэлектронный умножитель, полупроводниковые структуры, ионизационные камеры. Как правило, детектор необходимо экранировать или коллимировать. Однако, поскольку экран или коллиматор изготовляют из тяжелых материалов, то размеры и масса устройства увеличены.  [c.76]


Смотреть страницы где упоминается термин Измерения характеристик ионизирующего излучения : [c.20]    [c.325]    [c.12]    [c.246]   
Смотреть главы в:

Внедрение Международной системы единиц  -> Измерения характеристик ионизирующего излучения



ПОИСК



Характеристики излучения



© 2025 Mash-xxl.info Реклама на сайте