Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матричные материалы и их свойства

МАТРИЧНЫЕ МАТЕРИАЛЫ И ИХ СВОЙСТВА  [c.15]

Матричные материалы и их свойства  [c.19]

Прежде чем более подробно обсудить технические детали получения матриц, необходимо рассмотреть еще одно важное физическое свойство матричных материалов. Это их собственные спектры поглощения и испускания, а также КР- и ЭПР-спектры, которые могут затруднить исследование, накладываясь на спектры изучаемых матрично-изолированных частиц.  [c.34]

Приведены принципы создания композиционных материалов (КМ), сведения о составе, структуре и свойствах основных видов армирующих волокон и матричных материалов различной природы, технологические процессы их совмещения и физико-механические свойства получаемых КМ. Даны основы расчетов, проектирования и технологии изготовления элементов конструкций из КМ, технологические процессы, оборудование и оснастка, а также примеры эффективного использования КМ в современных конструкциях.  [c.2]


В случае спекания порошковых смесей или композиционных порошков гетерогенная структура покрытия формируется вследствие полного или частичного сохранения исходной структуры порошковых частиц. Такие покрытия получают газотермическим напылением, электро-контактной приваркой, а также гальваническим осаждением материалов. Возможности конструирования этих покрытий с различным сочетанием упрочняющих и матричных фаз значительное шире, чем у слоев, получаемых кристаллизацией из расплава. Создание композиционного покрытия базируется на основе сочетания в объеме покрытия материалов различных классов, обладающих различными исходными свойствами (металл, керамика, полимер). Природа исходных компонентов, их фазовое состояние и соотношение, состояние границы раздела фаз и создание заданной микро- и макроструктуры определяют свойства композиционного покрытия.  [c.146]

В реакции с кислородом вступают контактные поверхности как стружки и обработанной поверхности детали, так и инструмента. В местах, легко доступных для внешней среды, образуются индивидуализированные лленки окислов. Такими местами являются участки контактных площадок, примыкающих к их периметру. На внутренних участках контактных площадок возникают островки относительно тонких окисных пленок (толщиной 30—40 А), зоны твердого раствора кислорода в кристаллической решетке металлов и зоны с хемосорбированным и физически адсорбированным кислородом [12]. При наличии в воздухе влаги или углекислого газа возникают также пленки гидроокисей. Вторичные структуры, появившиеся на инструменте в результате реакции с кислородом, в процессе резания непрерывно разрушаются и вновь регенерируют. При различных обрабатываемых и инструментальных режущих материалах, а также в зависимости от условий резания изменяются химический состав окисных пленок, их структура (она может быть кристаллической или пористой), плотность, механические свойства, а также прочность сцепления с матричным материалом.  [c.31]

Таким образом, требования, предъявляемые к матрицам, можно разделить на эксплуатационные и технологические. К первым относятся требования, связанные с механическими и физико-химическими свойствами материала матрицы, обеспечивающими работоспособность композиции при действии различных эксплуатационных факторов. Механические свойства матрищл должны обеспечить совместную работу армирующих волокон при различных видах нагрузок. Прочностные характеристики материала матрицы являются определяющими при сдвиговых нагрузках, нагружении композита в направлениях, отличных от ориентации волокон, а также при циклическом нагружении. Природа матрицы определяет уровень рабочих температур композита, характер изменения свойств при воздействии атмосферных и других факторов. С повышением температуры прочностные и упругие характеристики матричных материалов, так же как и прочность их соединений со многими типами волокон, снижается, материал матрицы также характеризует устойчивость композита к воздействию внешней среды, химическую стойкость, частично теплофизические, электрические и другие свойства.  [c.11]


Главной особенностью ситаллов является их микрозернистость— размер их кристаллитов обычно не превышает 1 мкм. Керамические материалы имеют зерна размером более 10— 20 мкм. В качестве инициаторов зарождения кристаллитов при получении фоточувствительных стекол вводят соединения серебра, золота и других элементов [56, 359, 360]. Фотохромные стекла представляют по крайней мере двухфазную систему, состоящую из основных носителей фотохромных свойств светочувствительных микрокристаллов и их растворителя — матричного стекла, от природы которого зависят размер, форма и состав примесей в выделяющихся кристаллах. Светочувствительной фазой в них является твердый раствор галогенида серебра и хлорида натрия. Частицы меди, серебра и золота имеют размеры 10—60 нм, но при термообработке они растут — от размеров кластеров до нескольких микрометров. К гетерофазный относятся и цветные стекла — рубиновые, сапфировые и т. п. Структура стеклокерамики приведена на рис. 7.6 [359].  [c.273]

Теперь благодаря матричным уравнениям (4.14) и (4.15) в нашем распоряжении имеется достаточно общее представление механических свойств материала. Проводя обобщения на шестимерные векторы а и е, можно охватить все разнообразие задач трехмерной теории упругости. Полностью заполненная матрица [ ) размерностью бхб определяет общий случай анизотропного материала, который обладает различными свойствами в различных направлениях. Много частных случаев поведения материала находится в диапазоне между изотропией и полной анизотропией. Так, в частности, сюда можно отнести ортотропные материалы, имеющие три взаимно перпендикулярные плоскости упругой симметрии. В последующих главах будет подробно представлен ряд матриц [Е и [Е1 специального вида, отвечающих требованияхм соответствующей конечно-элементной модели. Важным свойством всех матриц жесткости и податливости для рассматриваемых здесь материалов является их симметричность (см. соотношения (4.12) и (4.13)).  [c.118]

Вот уже много лет углеродные волокна так же, как и нитевидные кристаллы, привлекают внимание разработчиков композиционных материалов с металлической матрицей. Однако оптимальные механические свойства, близкие к теоретическим, были получены лишь несколькими исследователями, что, по-видимому, объясняется чрезвычайно высоким темпом разупрочнения углеродных волокон вследствие их взаимодействия с матричными металлами. Для изготовления углеметаллических композиционных материалов используют различные технологические процессы [17, 45, 55] (табл. 3).  [c.356]

Образцы с ориентацией 1 испытывались для целого ряда матричных сплавов различных типов и объемных содержаний упрочняющих волокон. Ударные характеристики изменялись в зависимости от объемного содержания волокон (Vp), их диаметра (dp), предела прочности (Ovf) и прочности матрицы при сдвиге (хму) аналогично другим свойствам композиционных материалов. Соответствующая зависимость, согласующаяся с разработанными Келли [43] представлениями о выдергивании волокон, показана на рис. 32. Очевидный характер изменения выpaжeния(FiF rfJ a2p/т ry) авторы объясняли сдвигом матрицы по плоскостям, параллельным оси волокон и необратимостью упругой энергии. Другим результатом данной работы явилось определение зависимости работы при ударном разрушении от геометрии образца. Работа разрушения, отнесенная к единице площади образца типа I, уменьшалась с увеличением отношения глубины надреза к толщине образца в то же время никакой зависимости от толщины образца (измерением, коллинеарным с основанием надреза), уменьшенной в 4 раза по сравнению с шириной стандартного образца Шарпи, не было обнаружено. Последнее иллюстрировало то, что поперечное ся атие материала, связанное с размерами поперечного сечения  [c.482]

Из освоенных промьииленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.  [c.232]


Смотреть страницы где упоминается термин Матричные материалы и их свойства : [c.248]    [c.117]   
Смотреть главы в:

Матричная изоляция  -> Матричные материалы и их свойства



ПОИСК



Материалы композиционные — Преобразование характеристик при повороте системы координат алюминия — Матричные составляющие 83, 84 — Механические свойства

Матричные ФПУ

Свойства материалов

Спектральные свойства матричных материалов



© 2025 Mash-xxl.info Реклама на сайте