Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ортогональные проекции и система прямоугольных координат

Ортогональные проекции и система прямоугольных координат  [c.22]

Способ аксонометрического проецирования состоит в том, что данная фигура вместе с осями прямоугольных координат, к которым эта система точек отнесена в пространстве, параллельно проецируется на некоторую плоскость ). Следовательно, аксонометрическая проекция есть, прежде всего, проекция только на одной плоскости, а не на двух или более, как это имеет место в системе ортогональных проекций. При этом необходимо обеспечить наглядность изображений и возможность производить определения положений и размеров, как это изложено дальше.  [c.320]


Графическое формообразование объектов с ортогонально ориентированными гранями рассматривается нами как обязательный этап начального освоения метода пространственно-графического моделирования. Геометрические объекты этого типа имеют ясно воспринимаемое строение, позволяющее держать пространственную структуру формы под строгим контролем сознания с первых шагов работы. Исходным базовым объемом в таких формах служит прямоугольный параллелепипед, построение которого непосредственно связывает форму с базовой системой координат параллельной проекции.  [c.129]

Ускорение в этом случае определяется через проекции на естественные оси координат. Естественными осями координат, или натуральным триэдром траектории, называется ортогональная (прямоугольная) система координат, состоящая из осей а) касательной, направленной в сторону возрастания дуговой координаты, б) главной нормали, направленной в сторону вогнутости траектории, и в) бинормали, направленной так, чтобы три оси составляли правую систему координат (рис. 3.5).  [c.233]

К чертежу объекта в ортогональных проекциях присоединяют оси натуральной системы прямоугольных координат Охуг, если объект имеет случайную форму (черт. 8.3.1, а), за оси координат принимают оси про-екиий  [c.99]

Вычислительный аппарат векторною исчисле1П1я. Конечной целью решения практических задач, в частности, анализа или синтеза (проектирования) механизмов, является числовое, а не символическое, представление параметров механизмов, поэтому от векторных обозначений необходимо перейти к числовым предславлениям параметров. Наиболее просто векторы преобразуются к проекциям в прямоугольной декартовой системе координат, широко используемой в аналитической геометрии. Метод скалярных ортогональных проекций в сочетании с алгеброй чисел является предпочтительным математическим аппаратом векторного исчисления. Выбрав прямоугольную систему координат Оху>2, осям абсцисс, ординат и аппликат которой соответствуют орты I, j и к, представим произвольные векторы a, Ь, с и т. д. через их скалярные проекции  [c.43]

В качестве примера на рис. 26 в верхнем ряду приведены ортогональные проекции плоских фигур, лежащих в основании многогранников, с буквенным (k, т, п) обозначением размеров. Вниз по вертикали под каждым изображением (а, 6, в, г) по аксонометрически.м осям л, у построены прямоугольные изометрические ( ) и диметрические (//), а также косоугольные фронтальные (III) проекции этих фигур. Для проведения координатных осей прямоугольной диметрической проекции (рис. 27) через произвольно взятую точку О перпендикулярно к оси г проводят горизонтальную линию и откладывают на ней вправо от точки О (левая система координат) восе.мь равных произвольно взятых отрезков и через конец восьмого отрезка (точку а) проводят вверх прямую, параллельную оси 2, на которой откладывают вниз один такой же отрезок (аб) и семь таких же отрезков вверх от точки а. Соединяют точки 6 и О прямой линией. Ее продолжэдие является диметрической осью у, а продолжение прямой, соединяющей точки О и б,— о ью. V. При построении осей л и у в прямоугольной диметрической проекции (без применения транспортира) исходят из приближенных значений tg 7° = 1/8 и tg41° = 7/8.  [c.319]



Смотреть страницы где упоминается термин Ортогональные проекции и система прямоугольных координат : [c.376]    [c.97]   
Смотреть главы в:

Курс начертательной геометрии Издание 22  -> Ортогональные проекции и система прямоугольных координат



ПОИСК



Координаты ортогональные

Координаты системы

Ортогональность

Проекции на осп

Проекции ортогональные

Проекции прямоугольные

Прямоугольные (ортогональные) проекции

Прямоугольные координаты —

Система координат прямоугольна



© 2025 Mash-xxl.info Реклама на сайте