Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложение. Уравнения в криволинейных ортогональных координатах

В приложении даны таблицы с точными решениями уравнений теплопроводности. Приведены уравнения конвективной диффузии, неразрывности, движения жидкостей в некоторых криволинейных ортогональных системах координат и другие справочные материалы.  [c.6]

Введение (86).— 42. Усилие на плоском элементе (86). — 43. Усилия на поверхности и массовые силы (87). — 44. Уравнения движения (87). — 45. Равновесие (88). — 46. Равновесие усилий, приложенных к поверхности элемента объема (89).—47. Характеристика напряженного состояния в данной точке (89).— 48. Единицы напряжения (91).— 49. Преобразование компонентов напряжения (91).— 50. Поверхность напряжения (92).— 51. Различные типы напряжения (92).— 52. Разложение любого напряжения на всестороннее равномерное растягивающее и срезывающее напряжения (94).— 53. Дополнения (95).— 54. Уравнения движения и равновесия, выраженные в компонентах напряжения (96). — 55. Постоянное и равномерно изменяющееся напряжение (97).—56. Замечания, относящиеся к уравнениям в компонентах напряжения (98). — 57. Графическое представление напряжений (99).—58. Уравнения в компонентах напряжения в ортогональных криволинейных координатах (100). — 59. Частные случаи уравнений в компонентах напряжения в криволинейных координатах (102).  [c.8]


В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]


Смотреть страницы где упоминается термин Приложение. Уравнения в криволинейных ортогональных координатах : [c.9]   
Смотреть главы в:

Механика жидкости  -> Приложение. Уравнения в криволинейных ортогональных координатах



ПОИСК



Координаты криволинейные

Координаты криволинейные ортогональные

Координаты ортогональные

Криволинейные ортогональные координаты координатах

Ортогональность

Приложение А. Криволинейные координаты

Уравнения в координатах



© 2025 Mash-xxl.info Реклама на сайте