Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рутений Коррозионная стойкость

Коррозионная стойкость металлов в атмосфере, равно как и в других коррозионных средах, нередко определяется их термодинамической стабильностью [17]. К металлам высокой термодинамической стабильности, которые не корродируют в большинстве природных сред, относятся металлы платиновой группы (рутений, осмий, родий, иридий, палладий, платина), золото и до некоторой степени — серебро. Большинство этих металлов используют главным образом в ювелирной промышленности или в качестве покрытий специального назначения.  [c.89]


Палладий — рутений. Рутений значительно повышает твердость палладия. Сплавы, содержащие более 15 % Ри, трудно обрабатываются. Коррозионная стойкость сплавов палладий — рутений выше, чем коррозионная стойкость чистого палладия. Известен контактный сплав с 9,5 % Ни.  [c.300]

Соляная кислота при обычной температуре почти не действует на платину и палладий. Сплавы платины с иридием и рутением обладают значительно большей коррозионной стойкостью в кислоте в присутствии окислителей, чем платина.  [c.103]

Чистая платина — мягкий, пластичный и легко обрабатываемый металл. Механические свойства сильно зависят от степени холодной деформации материала и наличия в нем небольших примесей или легирующих элементов. На практике часто применяют сплавы платины с другими металлами платиновой группы. Температуры плавления сплавов платины с родием, иридием, осмием н рутением выше, а с палладием — ниже, чем у чистой платины. В большинстве случаев легирование повышает прочность, жесткость, твердость и коррозионную стойкость, Введение неблагородных металлов может, однако, приводить к охрупчиванию и разрушению платины и ее сплавов, даже если содержание этих элементов очень мало.  [c.216]

Сплавы платина— рутений. Добавки рутения позволяют наиболее существенным образом повысить твердость платины, однако уже при 15% Ru достигается предел обрабатываемости, что связано с различием кристаллографических структур платины и рутения. Не считая несколько большей склонности к окислению прн температурах выше 800° С, коррозионная стойкость сплавов платина — рутений сравнима со стойкостью платиноиридиевых сплавов с таким же содержанием платины.  [c.217]

Коррозионная стойкость рутения  [c.375]

Низкая коррозионная стойкость титана в кипящих растворах НС1 или H2SO4 (114 мм/год в Ю % НС1) повышается на три порядка в присутствии небольших количеств ионов или Fe (0,15 мм/год в кипящей 10 % НС1 с добавкой 0,02 моль/л Си " или Fe ) [8]. Присутствие небольшого, количества никеля как в среде, так и в виде легирующей добавки к титану повышает коррозионную стойкость. Показано, например, что титан пассивируется в кипящем 3 % растворе Na l, подкисленном до pH = 1, если металл легировать 0,1 % Ni или ввести в раствор 0,2 мг/л [9]. Наименьшим коррозионным разрушениям подвергается базисная плоскость гексагональной плотноупакованной решетки титана. Небольшие легирующие добавки палладия, платины или рутения также эффективно уменьшают скорость коррозии в кипящем Ю % растворе НС1 (2,5 мм/год для сплава с 0,1 % Pd см. рис. 24.1) [10, 11]. Если на поверхности титана присутствует палладий, скорость коррозии в кипящем 1т растворе H2SO4 уменьшается в 1000 раз 112], причем одинаково эффективно по-  [c.373]


Технеций растворяется в серной кислоте, перекиси водорода, бромной воде, в смеси соляной кислоты и перекиси водорода легко окисляется азотной кислотой. Известны соединения технеция с кислородом, серой, галоидами, фосфором, азотом, углеродом. Непрерывные ряды твердых растворов образует технеций с рутением, осмием, рением, легирование нержавеющей стали технецием улучшает ее коррозионную стойкость. Литой металл чистотой 99,92 % при 20 С хрупок он растрескивается при незначительных обжатиях холодной прокатки. После выдавливания и вакуумного отжига при 1300 X технеций выдерживает холодную прокатку с обжатиями 15—20 % за проход и волочение с обжатием 10 % за проход. Из технеция можно изготовлять прутки, проволоку, ленту и фольгу. Упрочнение при деформировании технеция намного больше, чем платины, но ниже, чем рения.  [c.141]

Высокая коррозионная стойкость в концентрированных кисло1ах и иеокис ляемость при нагревании на воздухе позволяют применять благородные металлы в самых жестких условиях работы. Наиболее коррозионностойкими в кислотах являются иридий, рутении, платина и золото. Палладий и серебро дозольнс легко реагируют с кислотами. В табл. 12 приведены сравнительные данные по коррозионной стойкости благородных металлов. При нагревании на воздухе платина, золото и серебро практически не окисляются. Сравнительно легко окис ляются осмий, рутений и иридий (табл. 13). Эти металлы образуют стойкие окислы, обладающие высокой упругостью паров, поэтому при высоких температурах наблюдается их испарение.  [c.404]

Повышение коррозионной стойкости титана в агрессивных средах, не содержащих окислителей, может быть достигнуто ионным легированием палладия, рутения и платины достаточно содержания легирующей добавки в несколько десятых долей процента. При облучении титана, например, ионами палладия с энергией 40—90 кэВ при дозах 10 —5-10 моль/см максимальная концентрация палладия достигается на расстоянии 10 нм от поверхности для ионов с энергией 40 кэВ и 20 нм для ионов с энергией 90 кэВ. При увеличении дозы облучения от 10 до 10" моль/см поверхностный слой титана постепенно обогащается палладием с изменением фазового состава поверхностного слоя, вместо образования соединений Т12Рс1 и ТгРйг на поверхности титана формируется металлическая пленка палладия. При дозах облучения палладием 5-10 —10" моль/см и энергии 20—100 кэВ коррозионная стойкость титана возрастает более чем в 10 раз.  [c.135]

К элементам первой группы относятся благородные металлы с низким перенапряжением водорода платина, палладий, а также, как показали опыты Стерна и Виссенберга, рутений, родий, иридий, ссмий [5]. К элементам второй грешны относится молибден, а также, вероятно, вольфрам, кроме того, к этой группе можно отнести и никель, который, как было показано в [4], повышает коррозионную стойкость титана. К третьей группе люжно отнести 144  [c.184]

Благородные металлы отличаются высокой стойкостью против действия кислот, щелочей, солей и газов. Благодаря этому они являются очень ценными материалами для химической промыщ-ленности, где находят разнообразное применение. Кроме того, они применяются в ювелирной промышленности, в зубоврачебной технике и в электротехнике. Если расположить эти металлы в порядке понижения относительной коррозионной стойкости, измеренной по степени коррозии в кислотах, щелочах и окислителях, получим следующий ряд иридий, рутений, родий, осмий, золото, платина, палладий [1].  [c.484]

К благородным относятся металлы с высокой коррозионной стойкостью, как, например, золото, платина, палладий, серебро, иридий, родий, рутений и осмий. Это металлы с красивым блестящим цветом, качество которых улучшается в сплаве, поэтому их используют в виде сплавов в электротехнике, электровакуумной технике, химическом аппаратостроении, приборостроении, медицине, кинофотопромышленности, ювелирном деле, а также применяют для антикоррозионной защиты изделий.  [c.35]

Совершенствование технологии платинирования титана привело к расширению круга применяемых материалов, и в некоторых случаях платина была заменена другими видами коррозиониостойких проводящих покрытий, такими как платина — иридий нли окись рутения. Кроме коррозионной стойкости, эти поверхности характеризуются способностью функционировать прн меиьших перенапряжениях, чем платиновые илн графитовые покрытия. Испытание новых покрытий в ряде электрохимических ячеек, используемых для производства хлора и хлората натрия, продемонстрировало их значительное превосходство над графитовыми, и в настоящее время уже действуют первые промышленные установки с подобными анодами.  [c.198]


Рутений, как и предсказано теоретически Пурбэ [3], подвержен анодному растворению в щелочных растворах, а коррозиониая стойкость при анодной поляризации в кислых растворах бывает разной. В некоторых условиях происходит выделение летучей и токсичной четырехокиси рутения. Осмий  [c.224]

Палладий может ианоснться на защищаемый металл тем же путем, однако он не используется так широко в таком виде, поскольку его коррозионная стойкость ниже коррозионной стойкости платины. Применению других металлов платиновой группы, т. е. родия, рутения и иридия, как защитных покрытий препятствуют трудности  [c.452]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]


Смотреть страницы где упоминается термин Рутений Коррозионная стойкость : [c.1239]    [c.587]    [c.163]    [c.559]    [c.1229]    [c.1238]    [c.577]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.282 ]



ПОИСК



Рутений

Стойкость коррозионная



© 2025 Mash-xxl.info Реклама на сайте