Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эволюция структуры и особенности разрушения

Эволюция структуры и особенности разрушения  [c.26]

Переходя к изложению глав 3,4, посвященных исследованию пластической деформации и разрушения, следует отметить, что несмотря на значительные усилия, последовательная картина, позволяющая представить эти процессы на масштабах от микроскопического до макроскопического, до последнего времени отсутствует. Причина отставания в объяснении деформации и разрушения, кажущихся намного проще таких явлений как сверхпроводимость и сверхтекучесть, состоит в том, что для последних хорошо определены элементарные носители явления (конденсат куперовских пар и атомов Не ), тогда как для первых их представление приводит к весьма трудной задаче. Так, например, совершенно неприемлемо рассматривать процесс сверхпластичности как сверхтекучесть дефектов кристаллической среды. Это связано с многообразием механизмов сверхпластичности и отсутствием последовательной микроскопической картины, позволяющей описать носители деформации. Таким образом, требуется развить микроскопическое описание дефектов кристаллической структуры, которое позволило бы представить не только упругое поле, но и характер нарушения межатомных связей в области ядер. Такая программа реализована в 1 главы 3, 2 главы 4. Другая особенность реальной структуры состоит в том, что в ходе своей эволюции различные дефекты испытывают не только взаимодействие, но и попадают в иерархическое соподчинение друг к другу дислокации выстраиваются в малоугловые стенки, вакансии образуют дислокационные петли и т. д. Установление иерархической связи проявляется как качественная перестройка в поведении системы дефектов, которая выражается в появлении нового структурного уровня. Соответствующая теория изложена в 5 главы 3.  [c.11]


Релаксация напряжений существенно влияет на эволюцию импульса нагрузки в материале и должна учитываться в точных расчетах динамики движения среды на волновой стадии. Необходимость детального описания структуры волн сжатия и разрежения возникает, например, при исследовании кинетики полиморфного превращения, разрушения и других релаксационных процессов, где нужно разделить особенности структуры регистрируемых волновых профилей, связанные с исследуемым процессом и с вязкоупругопластическими свойствами материала. Подобные исследования проводятся в  [c.104]

Многочисленные экспериментальные данные указывают на то, что при рассмотрении динамики накопления поврежденности материала и формирования очага разрушения необходимо учитывать коллективные явления, проявляющиеся во взаимном влиянии микродефектов. Известен ряд работ, рассматривающих характерные особенности коллективного поведения дефектов, когда наблюдаемые АЭ-сигналы зависят не только от вида источника, но и от условий взаимодействия совокупности дефектов. В соответствии с этим строятся математические модели, связывающие эволюцию дефектной структуры с параметрами наблюдаемой АЭ. Основой для разработки моделей АЭ при коллективном поведении микродефектов твердых тел может служить кинетическая теория разрушения. Эта теория рассматривает процессы возникновения, накопления и эволюции микродефектов в материалах, а также формирование из микродефектов очага разрушения - макротрещины. Все эти процессы сопровождаются излучением акустической эмиссии. При математическом моделировании предполагается, что зарождение в материале микротрещины приводит к разгрузке близлежащего объема, что сопровождается излучением импульса АЭ.  [c.175]

Таким образом, общая последовательность эволюции структуры в интерметаллидах на основе NiaAl является подобной той, что была установлена для чистых металлов и разупорядоченных сплавов. Однако специфическая особенность этих материалов связана с установлением дальнего порядка уже на ранних стадиях процесса возврата, т. е. при перераспределении и уменьщении количества дислокаций. Было высказано предположение [73], что непосредственная причина переупорядочения связана с подвижными вакансиями, образующимися в результате разрушения различных дефектов и дислокационных петель, присутствовавших в деформированном материале.  [c.145]

Таким образом, физическая природа интенсификации микропластичес-кого течения в поверхностных слоях материалов и последующего усталостного разрушения при циклических нагрузках должна рассматриваться именно с указанных позиций. При этом следует отметить, что необратимое действие вакансионного насоса при циклировании, создающего спектр приповерхностных источников дислокаций и вызывающего их переползание, обеспечивается не только созданием периодического пересыщения при цикле сжатия и существующим недосыщением на стоках [601, 602], но и различием потенциальных энергетических барьеров на источниках и стоках точечных дефектов, непосредственно на поверхности и в более удаленных от поверхности приповерхностных слоях. Поэтому полученные в главе 7 результаты представляют основу для дальнейшего развития как теоретических, так и экспериментальных исследований в области изучения основных закономерностей эволюции дислокационной структуры при испытаниях на длительную и циклическую прочность и физической природы усталости металлических и неметаллических материалов в различном диапазоне напряжений и температур. Наконец, учитывая результаты работы [586], следует также весьма осторожно относиться к интерпретации низкотемпературных пиков внутреннего трения и помнить, что они могут появиться в ряде случаев именно в силу проявления методических особенностей способа нагружения (использование циклических изгибных или крутильных колебаний с максимальной величиной напряжений вблизи свободной поверхности и присутствием градиента напряжений по сечению кристалла).  [c.258]


В книге рассмотрены ключевые проблемы синергетики неравновесных конденсированных сред, для адекватного описания которых стандартные представления типа фононов оказываются неприменимыми, а картина фазовых переходов требует существенной модификации. Концепция авторов основывается на представлении сложной системы самосогласованной эволюцией гидродинамической моды, характеризующей коллективное поведение, поля, сопряженного этой моде, и управляющего параметра, отвечающего за перестройку атомных состояний. Развитый подход позволяет представить такие особенности, как неэргодичность статистического ансамбля, образование иерархических структур, критическое замедление релаксации среды, влияние подсистемы, испытывающей превращение, на окружающую среду. В результате построена единая картина, охватывающая такие разнородные явления, как структурные превращения, пластическая деформация и разрушение твердого тела. Это делает Книгу интересной для широкого круга научных сотрудников, аспирантов и студентов старших курсов физико-математических, естественно-научных и инженерных специальностей.  [c.2]

Будучи наукой о самоорганизующихся системах, синергетика позволяет понять особенности коллективного поведения сильно неравновесных статистических ансамблей в физике, химии, биологии, социологии и т.д. Вместе с тем при исследовании конденсированной среды до последнего времени использовались методы равновесной статистической физики. Это связано с предположением, что конденсированная среда, находящаяся под воздействием, сохраняющим ее как таковую, представляет равновесную или слабо неравновесную статистическую систему. В последнее время, однако, возрос интерес к явлениям, в которых поведение статистического ансамбля атомов в конденсированном состоянии становится таким, что обычные представления (типа концепции фононов или термодинамической картины фазовых переходов) теряют применимость, либо требуют принципиальных изменений. Такое поведение связано с сильным отклонением атомной системы от равновесного состояния — как это имеет место, например, в ядре дефекта кристаллической решетки или зонах пластического течения и разрушения. Последовательная картина сильно неравновесной конденсированной среды требует использования методов, которые позволяют представить такие особенности как неэргодичность статистического ансамбля, возникновение иерархических структур, структурная релаксация, взаимное влияние подсистемы, испытывающей фазовый переход, и окружающей среды и т. д. Целью настоящей монографии является всестороннее исследование такого рода особенностей в рамках концепции о перестройке атомных состояний при значительном удалении от равновесия. Это достигается на основе синергетической картины, представляющей взаимно согласованную эволюцию гидродинамических мод, параметризующих систему.  [c.6]


Смотреть страницы где упоминается термин Эволюция структуры и особенности разрушения : [c.166]   
Смотреть главы в:

Сверхпластичность промышленных сплавов  -> Эволюция структуры и особенности разрушения



ПОИСК



Особенности структуры

Эволюция



© 2025 Mash-xxl.info Реклама на сайте