Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обмен частицами и энергией между подсистемами

До сих пор мы учитывали лишь баланс частиц в химической реакции. Если обмен энергией между компонентами протекает медленно, то следует включить и уравнение баланса энергии. Интересный пример такого рода — процессы ионизации в плазме — рассмотрен методом неравновесного статистического оператора в работе [159]. Так как отношение массы электрона к массе иона мало, обмен энергией между подсистемами затруднен. Поэтому в квазиравновесном состоянии электронам и ионам следует приписать различные температуры.  [c.149]


Обмен частицами и энергией между подсистемами. В  [c.97]

Атомные частицы, проходя через вещество, теряют энергию двумя способами. Во-первых, они могут возбуждать или вырывать атомные электроны во-вторых, они могут передавать энергию атому в целом при ядерных столкновениях. В связи с этим прохождение атомных частиц через вещество представляет сложную задачу многих тел. Однако ввиду большой массы ядра по сравнению с массой электрона можно с приемлемой степенью точности провести различие между ядерными столкновениями , при которых импульс и кинетическая энергия частицы переходят в поступательное движение атома как целого, и электронными столкновениями , при которых энергия передается атомным электронам и происходит возбуждение или ионизация атома. Ядерные столкновения относят к разряду упругих в отличие от неупругих столкновений при обмене энергией налетающей частицы с электронной подсистемой вещества.  [c.198]

Квазиравновесное распределение для слабо взаимодействующих подсистем. Рассмотрим теперь систему, состоящую из нескольких подсистем, между которыми может происходить обмен энергией и частицами. Предположим, что подсистемы слабо взаимодействуют друг с другом и поэтому обмен энергией и частицами можно считать медленным процессом. Подобная ситуация имеет место, например, в электронно-ионной плазме, где обмен энергией между электронами и ионами затруднен из-за большого различия их масс. Пример процесса, в котором  [c.101]

Контакт, выравнивающий давление изобарический контакт). Если две системы разделены подвижной перегородкой, то возможно изменение объема одной из систем за счет другой. Если перегородка допускает только изменение объемов, но не обмен энергией или частицами, то мы имеем пример чисто механического контакта. Этот контакт можно также рассматривать как взаимодействие между двумя подсистемами, для которого приближенно имеем  [c.27]

Яркой особенностью С. д., отличающей его от др. эффектов воздействия излучения на движение частиц газа, является то, что для возникновения направленного движения газовых компонентов не обязателен прямой или косвенный обмен импульсом и энергией между излучением и внеш. степенями свободы частиц газа. Особенно отчётливо это видно на примере сугубо радиационной релаксации возбуждённого состояния поглощающих частиц (что характерно для электронных переходов атомов) поглощённый частицей фотон в результате спонтанного испускания снова возвращается в поле излучения практически без изменения энергии. Т. о., энергия поступат. движения газовых компонентов черпается из тепловой анергии, а действие излучения, выступающего в роли своеобразного демона Максвелла, состоит в преобразовании хаотич. (теплового) движения частиц газа в упорядоченное (направленное) движение компонентов смеси. Неизбежное при этом уменьшение энтропии газовой подсистемы компенсируется увеличением энтропии второй подсистемы — излучения из упорядоченного (направленного) оно  [c.469]


ЛОКАЛЬНОЕ ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ — одно из осн. понятий термодинамики неравновесных процессов и механики сплошных сред, равновесие в очень малых (элементарных) объёмах среды, содержащих всё же столь большое число частиц (молекул, атомов, ионов и др.), что состояние среды в этих физически бесконечно малых объёмах можно характеризовать темп-poii Т х), хим. потенциалами [Xf (x) и др. термоди-намич. параметрами, но не постоянными, как при пол-ном равновесии, а зависящими от пространств, координат X и времени. Ещё один параметр Л. т. р.— гидро-дипамич. скорость и(х) — характеризует скорость движения центра масс элемента среды. При Л. т. р. элементов среды состояние среды в целом неравновесно. Если малые элементы среды рассматривать приближённо как термодинамически равновесные подсистемы и учитывать обмен энергией, импульсом и веществом между ними на основе ур-ний баланса, то задачи термодинамики неравновесных процессов решаются методами термодинамики и механики. В состоянии Л. т. р. плотность энтропии на единицу массы является  [c.606]


Смотреть страницы где упоминается термин Обмен частицами и энергией между подсистемами : [c.97]    [c.270]   
Смотреть главы в:

Статистическая механика неравновесных процессов Т.2  -> Обмен частицами и энергией между подсистемами



ПОИСК



Обмен энергией

Обменная энергия

Подсистема

Энергия частицы



© 2025 Mash-xxl.info Реклама на сайте