Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкость разрушения основных конструкционных материалов

Приведенные данные свидетельствуют о высокой конструктивной прочности биметалла сталь -молибден. Если молибден при комнатной температуре абсолютно хрупок (ударная вязкость 0), то ударная вязкость биметалла сталь—молибден достаточно высока (8—10 кгс м/см ). Возможность получения биметалла сталь—молибден с хорошими механическими свойствами и сопротивлением разрушению обеспечивает и возможность использования молибдена в качестве конструкционного материала в химическом машиностроении, так как при этом устраняются основные недостатки молибдена - низкие пластичность и вязкость.  [c.104]


Сопротивление удару оценивают по работе, затраченной на разрушение образца (удельная ударная работа). Показатель ударной вязкости является одной из основных характеристик материала, определяющих конструкционную прочность.  [c.162]

Одной из основных проблем материаловедения и металлургии является создание материалов с наибольшей вязкостью разрушения и наибольшей прочностью. Последнее требование выражено не вполне четко, так как прочность не является константой материала. Поэтому будем различать два понятия металлургическую прочность и конструкционную прочность. Под первой понимается (обычно приводимое в справочниках по материалам) значение прочности, полученное на гладких лабораторных образцах определенных размеров из материала в состоянии поставки. Прочность изделия из этого же материала (конструкционная прочность) иногда оказывается существенно меньшей. Особенно часто это происходит при приближении к области хрупкого разрушения.  [c.197]

Ввиду хрупких разрушений крупных конструкций возникла необходимость разработки различных методов расчета конструкций для предотвращения их разрушений. Хрупкие разрушения могут происходить при низких напряжениях, значительно меньших тех напряжений, которые вызывают текучесть материала конструкции и допускаются расчетными нормами. Поэтому необходимо внести изменения или дополнения в обычные методы расчета, с помош ью которых определяют предельную нагрузку, не вызываюш,ую чрезмерную текучесть материала или его окончательное разрушение. Из разных способов, применяемых для уменьшения возможности разрушения при низком напряжении, можно выделить две основные группы 1) способы, связанные с различными аспектами конструирования, позволяюш ими снизить уровень концентрации локального напряжения 2) способы, связанные с различными стадиями изготовления, позволяюш ими уменьшить уровень внутренних напряжений в конструкции или вероятность разрушения конструкции с дефектами, которые могли действовать как концентраторы напряжения для инициирования треш ины. Однако основными способами является выбор конструкционного материала с достаточной вязкостью разрушения, способного сопротивляться разрушению при низких напряжениях.  [c.211]

Оценивая реальную прочность конструкционного материала, следует учитывать характеристики пластичности б, i j, а также вязкость материала, так как именно эти показатели в основном определяют возможность хрупкого разрушения (см. с. 181).  [c.281]


В установках для подготовки нефти используют оборудование различного назначения теплообменники, насосы, дегидраторы, резервуары и др. Среди них наиболее металлоемкие и весьма ответственные резервуары, предназначенные для предварительного отстоя обводненной нефти, сбора и отстоя сточной воды, сбора и хранения товарной нефти и нефтепродуктов. Исходя из условий эксплуатации резервуаров, к конструкционному материалу предъявляют сложный комплекс требований он должен обладать высокой прочностью при достаточно высокой пластичности и вязкости, минимальной склонностью к хрупкому разрушению, хладоломкости и старению, низкой чувствительностью к надрезам, хорошей свариваемостью, высокой коррозионной стойкостью к воздействию атмосферы, грунтовых вод, хранимых нефтей и нефтепродуктов. Основной конструкционный материал для изготовления резервуаров — сталь различных марок. В последние годы получают все большее распространение алюминиевые сплавы для изготовления отдельных узлов резервуаров — крыш и верхних поясов вертикальных цилиндрических резервуаров.  [c.164]

Ударная вязкость, характерузующая вязкость конструкционных и инструментальных сталей для горячей деформации, также однозначно изменяется в зависимости от твердости даже при различных температурах испытания (рис. 28). Основное влияние вспомогательных характеристик и здесь хорошо разграничивается. В зависимости от температуры испытания (или эксплуатации) это влияние становится более значительным. На основании опыта, полученного при исследовании причин разрушения инструментов для горячей деформации, значение ударной вязкости материала инструментов, разрушившихся хрупко при 500° С, с V-образным надрезом, Ян=20-г--ь25 Дж/см .  [c.46]

Развитие техники непрерывно выдвигает перед наукой о прочности конструкционных материалов новые проблемы и задачи. Это обусловлено тем, что общая тенденция в осуществлении технических замыслов и проектов всегда предусматривает использование материалов и сварных соединений с заданными физико-механическими свойствами — прочностью и пластичностью, жаропрочностью и хладностойкостью, трещино-стойкостью (способностью материала тормоЗить распространение в нем трещины), ударной вязкостью, необходимым сопротивлением малоцикловому или многоцикловому разрушению и т. п. Изучение этих свойств является основной частью разработок в области создания новых материалов, совершенствования технологических процессов их производства и обработки, а также в области определения ресурса работы элементов конструкций.  [c.5]

В настоящее время нет окончательного обоснованного мнения о том, какими механическими характеристиками должен обладать металл для лучшего сопротивления эрозии. Этот факт может найти свое объяснение в том, что при принятии тепловой теории эрозионного разрушения, устанавливающей вынос с поверхности изделия тонкого слоя полужидкого или совсем расплавленного металла, механические свойства поверхностного слоя, по-видимому, не играют определяющей роли. Действительно, при расплавлении границ зерен или отдельных структурных составляющих, вероятно, не имеет значения, твердый или мягкий был материал, с высоким или низким пределом упругости и прочности, с большим или малым значением ударной вязкости и т. д. Однако совсем не учитывать механические свойства материала изделий, конечно, нельзя. Следует признать, что высокие характеристики прочности, при одновременной хорошей пластичности и вязкости, безусловно, способствуют лучшей работе изделий в условиях воздействия горячих газовых струй. Основным здесь является не то, какими свойствами обладает металл при комнатной температуре, а то, как эти свойства изменяются с повышением температуры и какие характеристики имеет металл при высоких рабочих температурах. Проведенные исследования показали, что, например, образцы из чистого молибдена или хрома, имеющие твердость по Виккерсу в пределах 40—50 кПммР-, при измерении в вакууме на приборе Гудцова—Лозинского в диапазоне 1050—1100° С, обладают значительно более высокой эрозионной стойкостью, чем образцы из конструкционной стали, имеющей при тех же температурах твердость 3—5 кГ/мм . В данном случае малое разупрочнение сплавов при высоких температурах способствует лучшей сопротивляемости эрозионному разрушению.  [c.146]



Смотреть главы в:

Механика хрупкого разрушения  -> Вязкость разрушения основных конструкционных материалов



ПОИСК



Вязкость материалов

Вязкость разрушения

Материал конструкционный

Материал основной

Разрушение конструкционных материалов

Разрушение материалы



© 2025 Mash-xxl.info Реклама на сайте