Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругая полоса с прямолинейными трещинами

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]


Г. И. Баренблатт и Г. П. Черепанов (1961) рассмотрели задачу об изолированной прямолинейной трещине, простирающейся вдоль некоторой линии упругой симметрии в ортотропном бесконечном теле в условиях плоской деформации. В этой же работе рассмотрена задача расклинивания ортотропного тела с плоскостями симметрии, параллельными двум осям, абсолютно жестким бесконечным клином, движущимся с постоянной скоростью. Предполагается, что на поверхности соприкосновения клина с расклиниваемым телом действуют силы кулонова трения. Более детально исследуется вопрос о расклинивании ортотропного тела неподвижным клином постоянной толщины в пренебрежении силами трения. В работе Э. П. Фельдмана (1967) в рамках дислокационной теории тонких двойников и трещин исследован вопрос распространения тонкой равновесной трещины вдоль анизотропной полосы конечной толщины. При постепенном возрастании внешних нагрузок трещина растет до некоторого критического значения, после чего происходит мгновенное разрушение полосы.  [c.387]

В восьмой главе рассмотрены плоские задачи об упругопластическом равновесии тел с трещинами при локализации зон пластичности в тонких слоях. При моделировании полос пластичности скачками смещений на прямолинейных отрезках упругопластические задачи сводятся к решению задач теории упругости для тел с разрезами неизвестной заранее длины.  [c.4]

Изгиб полос (балок), папряженное состояние оболочек с трещинами. Ряд задач предельного равновесия полос, содержащих различные трещины, был решен В. В. Панасюком и Б. Л. Лозовым (1961—1964) с использованием эффективных методов решения соответствующих задач теории упругости, разработанных Н. И. Мусхелишвили и Г. Н. Савиным. Здесь были рассмотрены как задачи об изгибе полос с симметричными относительно продольной оси полосы сквозными прямолинейными трещинами, так и с несимметричными (перпендикулярными боковым граням полосы). Напряженно-деформированное состояние и величина предельной разрывающей нагрузки определяются для различных условий задания внешних нагрузок (постоянные изгибающие моменты, сосредоточенные силы, равномерное давление).  [c.388]


Смотреть главы в:

Двумерные задачи упругости для тел с трещинами  -> Упругая полоса с прямолинейными трещинами



ПОИСК



309 — Прямолинейность



© 2025 Mash-xxl.info Реклама на сайте