Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система криволинейных трещин в упругой плоскости

Система криволинейных трещин в упругой полосе. Пусть в бесконечной плоскости имеется N + 2 разрезов L n =0,1,. ... .., N + 1), отнесенных к локальным системам координат (см. рис. 7). Предположим, что контуры Lq и представляют  [c.134]

Задача об упругом равновесии бесконечной плоскости с системой прямолинейных трещин при циклической симметрии решалась многими авторами (см. обзор в книге [160]). В последнее время появились работы [285, 380), в которых изучалась система радиальных разрезов. Общий случай ориентации циклически размещенных прямолинейных трещин рассмотрен в работе [157]. Ниже этот результат обобщается на случай криволинейных разрезов.  [c.78]


Плоские задачи теории упругости для бесконечного тела, ослабленного двоякопериодической системой прямолинейных трещин, рассматривались в монографиях [160, 166], где приведен обзор исследований в этом направлении. Случай прямолинейных трещин также изучался в работах [18, 58, 242, 306]. В последнее время рассмотрен общий случай двоякопериодической системы криволинейных разрезов в изотропной [110, 206, 340] и анизотропной [245] плоскостях.  [c.105]

Пусть в упругой изотропной плоскости, находящейся под действием стационарного температурного поля Т х, у), имеется гладкая криволинейная трещина L (или система таких трещин), берега которой не контактируют и свободны от нагрузки, т. е.  [c.228]

При исследовании напряженно-деформированного состояния тел с трещинами широкое применение нашел метод сингулярных интегральных уравнений. Он особенно удобен и эффективен при решении плоских задач теории упругости для тел сложной геометрии, содержаш,их включения, отверстия и трещины произвольной формы. Впервые [И, 137, 181] сингулярные интегральные уравнения использовались при исследовании распределения напряжений около прямолинейной трещины (или полосы пластичности) в некоторых классических областях (полуплоскость, полоса, бесконечная плоскость с круговым отверстием). Система произвольно ориентированных прямолинейных трещин изучалась в работах [21, 22, 70]. Рассматривался также случай криволинейных трещин в бесконечной плоскости [16, 40, 74, 92, 117]. В работах [94—96] основные граничные задачи для многосвязной области, содержащей изолированные криволинейные разрезы и отверстия произвольной формы, сведены к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. Эти результаты обобщены на случай, когда разрезы выходят на границу тела, а также соединяют отверстия между собой и (или) с внешней границей [97]. К настоящему времени появилось большое количество работ, в которых методом сингулярных интегральных уравнений изучаются плоские задачи теории трещин. Обзор этих исследований имеется в работах [5, 32, 45, 54, 70, 95, 100].  [c.5]

Основные граничные плоские и антиплоские задачи теории упругости для многосвязной области, содержащей криволинейные разрезы и отверстия произвольной формы, сведены в работах [94—96] к системе сингулярных интегральных уравнений первого рода по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. При этом предполагалось, что контуры разрезов и отверстий не пересекаются между собой (см. параграф 3 данной главы). Краевые трещины рассматривались только в некоторых частных случаях граничного контура (окружность, прямая), когда удается построить модифицированные сингулярные интегральные уравнения, не содержащие искомых функций на этом контуре [70, 95]. В последнее время изучались также задачи в случае произвольной симметричной области с краевой трещиной, находящейся на оси упругой и геометрической симметрии [27, 53, 58, 104] (см. также параграфы 3—5 четвертой главы). Ниже, следуя работе [97], приводятся обобщения указанных выше результатов на общий случай многосвязной области с разрезами и отверстиями, когда разрезы одним или двумя концами могут выходить на внешнюю границу и контуры отверстий. Получены численные решения построенных интегральных уравнений при одноосном растяжении бесконечной плоскости с одним или двумя круговыми отверстиями, на контуры которых выходят радиальные трещины.  [c.33]



Смотреть страницы где упоминается термин Система криволинейных трещин в упругой плоскости : [c.381]    [c.5]   
Смотреть главы в:

Двумерные задачи упругости для тел с трещинами  -> Система криволинейных трещин в упругой плоскости



ПОИСК



252 — Упругие системы

Система па плоскости

Система трещин

ТРЕЩИНЫ В ПЛОСКОСТИ

Упругая плоскость



© 2025 Mash-xxl.info Реклама на сайте