Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные термодинамические соотношения для поверхности

Используя основные термодинамические соотношения, можно показать, что для расчета энергии связи влаги с материалом в качестве единственного критерия для классификации форм связи с материалом используют величину так называемой свободной энергии изотермического обезвоживания. Вследствие связывания воды с материалом понижается давление пара воды над его поверхностью, что приводит к уменьшению свободной энергии системы.  [c.503]


ОСНОВНЫЕ ТЕРМОДИНАМИЧЕСКИЕ СООТНОШЕНИЯ ДЛЯ ПОВЕРХНОСТИ  [c.140]

В главах III и V применительно к произвольным конечным объемам среды сформулированы основные интегральные соотношения механической и термодинамической природы. Для непрерывных движений они эквивалентны соответствуюш им фундаментальным дифференциальным уравнениям в гл. VII интегральные соотношения были использованы для получения условий на поверхностях сильных разрывов.  [c.53]

Глава начинается с обсуждения основных термодинамических свойств металлов и окислов, причем основное внимание уделено тем окислам, которые могут быть использованы в виде волокон и покрытий. Затем рассмотрено применение методов термодинамики твердых растворов для оценки стабильности композитов. В обзорном плане изложены обширные литературные данные о взаимодействии жидких металлов с окислами, полученные при изучении процессов изготовления керметов и пропитки усов расплавом. Цель этого обзора —обобщить имеющуюся информацию о смачивании окислов жидкими металлами и вывести основные закономерности. Далее проанализировано соотношение между смачиванием и формированием связи в композитах. Применительно к режимам изготовления и условиям службы композитов рассматриваются диффузионная сварка и твердофазные реакции, причем более подробно— кинетика реакций металл — окисел и характеристики поверхности раздела. Глава завершается анализом имеющихся литературных данных о механических свойствах, чувствительных к состоянию поверхностей раздела. Этот анализ ограничен несколькими металлическими системами, упрочненными окислами, которые изучены в настоящее время.  [c.308]

При прохождении поверхности разрыва дополнительные параметры, от которых зависит внутренняя энергия, могут изменяться скачком, например, от значений, соответствующих замороженному состоянию перед скачком, до значений, соответствующих термодинамически равновесному состоянию за скачком. При этом в соотношении (4.10) или (4.11) вид функциональной зависимости теплосодержания h или внутренней энергии е от основных термодинамических параметров может быть разным перед скачком и за ним. К примеру, для совершенного газа с постоянными теплоемкостями выражение для  [c.74]

Экспериментальное исследование кинетики и температурной зависимости физических характеристик, обусловливаемых дефектами (например, электросопротивления, постоянной решетки, теплосодержания и т. д.), и теоретический анализ полученных данных показали, что основными типами точечных дефектов являются вакансии, межузельные атомы и состоящие из них комплексы. Энергия образования вакансии, определяемая работой по переносу атома из узла решетки на поверхность кристалла, составляет величину порядка 1 эВ (для благородных металлов, например), а межузельного атома — несколько эВ (для Си — 3,4 эВ). Поэтому появление и вакансий и межузельных атомов приводит к повышению термодинамической устойчивости системы, если концентрация и энергия образования дефектов отвечают соотношению (10.17). При этом очевидно, что концентрация одиночных вакансий должна быть заметно выше концентрации межузельных атомов.  [c.232]


В основной своей части этот метод состоит в детальном изучении на основании наиболее достоверных опытных данных в сочетании с некоторыми общетеоретическими положениями геометрической структуры термодинамической поверхности, отображающей физические свойства реальных газов. Выявленные особенности термодинамической поверхности (по изохорным и изотермически.м сечениям) автор выражает некоторыми соответствующими им аналитическими соотношениями, которые и используются затем при составлении уравнения состояния реального газа.  [c.484]

Известно, что оксидом железа, который может существовать термодинамически равновесно непосредственно на поверхности углеродистой стали и обладать оптимальными защитными свойствами, является магнетит. Он относится к классу шпинелей и в результате соответствия параметров кристаллических -решеток хорошо сцепляется со сталью. Пространственная структура зародыша элементарной ячейки магнетита РезО представляет собой шестиатомное кольцо, пять атомов которого лежат в одной плоскости, шестой (атом кислорода) — в плоскости, перпендикулярной плоскости основного кольца. Соотношение концентраций двух- и трехвалентного железа в классическом магнетите составляет 1 2. Известно, что вторым оксидом, обладающим достаточно хорошими защитными свойствами, является маггемит. Однако при низких температурах оксид трехвалентного железа не может существовать термодинамически равновесно непосредственно на по-нерхности стали.  [c.48]

Рельеф шероховатости должен быть таков, что при перемещении периметра смачивания вдоль поверхности пластинки при ее вытаскивании поверхность жидкости последовательно занимает равновесные, бесконечно близкие положения. Это требование, как легко понять, безусловно выполняется при достаточно пологом рельефе поверхности, но при чересчур крутом (большие значения может и не выполняться. В этом случае перемещение периметра смачивания может происходить термодинамически необратимо, вследствие чего появится гистерезис макрокраевого угла смачивания, т, е. зависимость его величины от направления движения периметра смачивания. Полученное соотношение (6) показывает, что шероховатость всегда уменьшает краевой угол и может довести его до нуля. Следует заметить, что если из уравнения (6) для os в получится величина, большая единицы, то это будет означать в случаях, когда os 00, найденное из (4), больше единицы, что не только краевой угол равен нулю, но что, кроме того, жидкость растекается по данной шероховатой поверхности, очевидно, используя при этом в основном углубления и микроканавки в ней.  [c.76]


Смотреть главы в:

Сложные термодинамические системы Изд.2  -> Основные термодинамические соотношения для поверхности



ПОИСК



Основные соотношения

Поверхности основные

Соотношения термодинамическое

Термодинамическая поверхность



© 2025 Mash-xxl.info Реклама на сайте