Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соотношения между единицами измерений давления

Соотношения между единицами измерения давления  [c.11]

В табл. 1 приводятся соотношения между единицами измерения давления технической системы и единицами системы СИ.  [c.5]

В результате получаются следующие соотношения между единицами измерения давления, выраженного в атмосферах (кг/см ), в кг/м , а также измеренного высотой столба жидкости -  [c.15]

Основные соотношения между единицами измерения давления приведены в табл. 1.  [c.9]

Поскольку ГОСТ 9867—61 допускает временно применять и старые единицы измерения, в табл. 1-1 приводятся для справок соотношения между старыми и новыми единицами измерения давления.  [c.11]


Между приведенными единицами измерения давления существует следующее соотношение  [c.22]

Соотношения между остальными единицами измерения давления приведены в приложении III.  [c.27]

Единица измерения давления и соотношения между единицами давления 25  [c.637]

Соотношения между различными единицами измерения давления приводятся в табл. 1-1.  [c.12]

Итак, между установленными единицами измерения давления существует соотношение  [c.18]

Если принять, что температурное изменение плотности газа так же, как и изменение его объема, происходит согласно газовым законам, то объем испаряющегося газа можно измерять не обязательно при температуре фазового перехода. При этом следует учитывать, что соотношение плотностей жидкости и газа будет отличаться от приведенного в табл. 2. Так, если в процессе перехода жидкого азота в газообразный объем газа измеряют при 0°С, то отношение между плотностями двух фаз равно 650 вместо 176 при температуре -196°С. Требование постоянства температуры, при которой измеряется объем газа, не является строгим, так как коэффициенты объемного расширения газов малы. Например, коэффициент объемного расширения азота составляет 3,7-10" К в интервале температур О—100°С. Отклонения в 1 К вызывают изменение плотности всего на 0,1 %. Заданное рабочее давление во время перехода жидкость — газ должно поддерживаться очень точно. Соотношение между чувствительностью измерения, т.е. изменением объема, приходящимся на единицу введенной теплоты, и величиной dp/dT зависит, согласно уравнению Клаузиуса - Клапейрона, от обратной температуры фазового перехода. Поэтому температура фазового равновесия между жидким и газообразным азотом при нормальном давлении менее чувствительна к изменению давления, чем температура любого другого перехода жидкость - газ, который происходит при более высоких температурах.  [c.78]

Соотношения между единицами для измерения давлений в системе СИ и внесистемными единицами, используемыми в технике, приведены в прил. 3.  [c.8]

Другой важный параметр состояния — абсолютное давление — представляет собой силу, действуюш ую по нормали к поверхности тела и отнесенную к единице площади этой поверхности. Для измерения давления применяются различные единицы паскаль (Па) , а также бар, так называемая техническая атмосфера или просто атмосфера (1 кгс/см ), миллиметр ртутного или водяного столба. Соотношения между различными единицами изменения давления приведены в табл. 1-2.  [c.7]


Для измерения давления применяются также и другие единицы миллиметры ртутного столба мм рт. ст.) и миллиметры водяного столба м.ч вод, ст.). Соотношения между ними и атмосферой приведены в табл. 48.  [c.118]

Натекание при тех же значениях V, Ар я I будет различным для разных газов и величин внешних давлений. Эталонное натекание обычно определяют для стандартных условий воздух при нормальном атмосферном давлении проходит в объем, откачанный до давления намного меньшего, чем атмосферное давление. Таким образом, условно течь характеризуют количеством воздуха, проходящим через нее в единицу времени из атмосферы в вакуум. По системе СИ течь измеряют в единицах потока воздуха— мм МПа/с. Ранее для этого применяли другую единицу измерения — л мкм/с. Соотношения между этими единицами следующие 1 мм -МПа/с = 7,52 л-мкм/с 1 л мкм/с = = 1,33 10-1 мм МПа/с.  [c.232]

НОМ атмосферном давлении (см. стр. 14) придано численное значение температуры 100. Отсюда 1/100 часть температуры между этими состояниями служит единицей измерения температуры, которая носит название градус Цельсия и обозначается С. Температура, измеренная этой единицей, обозначается i, °С. При этом способе отсчета температура тройной точки составляет /=0,01 "С. Таким образом, соотношение между температурами при обоих способах отсчета  [c.11]

К сожалению, в публикациях по растворимостям газов используется большое количество различных единиц измерения. Наиболее часто встречаются два безразмерных коэффициента 1) коэффициент Бунзена, определяемый как объем (пересчитанный на О °С и 1 атм) газа, растворенного в единице объема растворителя при температуре системь Т и при парциальном давлении растворимого, равном 1 атм 2) коэффициент Оствальда, определяемый как объем газа при температуре системы Т и парциальном давлении р, растворенный в единице объема растворителя. Если растворимость мала и газовая фаза идеальна, то коэффициент Оствальда не зависит от р, связь между коэффициентами определяется соотношением  [c.322]

Б таблице на стр. М3 1тома приведены единицы измерения давления и соотношения между ними.  [c.10]

Единицами измерения давления являются килограмм на квадратный метр кПм ), ньютон на квадратный метр н1м ), бар (Ю н1м ), дина на квадратный сантиметр дин см ), техническая атмосфера или килограмм на квадратный сантиметр ат или кПсм ). Между этими единицами измерения существуют следующие соотношения  [c.4]

Наличие большого числа метрических и неметрических систем единиц, и внесистемных единиц со сложными, разнообразными и труднозапоминае-мыми соотношениями между единицами однородных величин сильно затрудняет их практическое применение, вызывает значительные трудности и неудобства, связанные с переводом числовых значений, величин физических констант и эмпирических формул из одной системы единиц в другую и с введением большого числа переводных коэффициентов. Создалось положение, при котором только в Европе и Северной Америке для измерения длин пользуются 18 различными единицами. Аналогичное положение для измерения массы, давления и других физических величин.  [c.286]

В книге использована система единиц измерения МКГСС. Ниже приведены соотношения между единицами этой системы и международной системы (СИ) сила 1 кгс = 9,81 Я давление кгс см = 98-10 Па масса 1 кгс-сек 1см = 981 кг плотность  [c.4]

Таблица 27. Перевод значений количества теплоты из калорий (международных) в джоули 162 Т аблица 28. Перевод значений энергии из киловатт-часов в джоули 167 Таблица 29. Уравнения электромагнетизма и некоторые уравнепия атомной физики в рационализованной форме для СИ и нерационализованной форме для системы СГС (симметричной) 172 Таблица 30. Переводные множители для электрических и магнитных величин 175 Таблица 31. Примеры применения единиц СИ для выражения электрических и магнитных величин 177 Таблица 32. Абсолютная и относительная видности при различных длинах волн 181 Табл и ц а 33. Радиологические величины и единицы, рекомендуемые Международной комиссией по радиологическим единицам и измерениям 183 Таблица 34. Предельно допустимые удельные активности и концентрации радиоактивных изотопов в соответствии с санитарными правилами 186 Таблица 35. Фундаментальные физические константы 187 Таблица 36. Соотношение между единицами длины 190 Таблица 37. Соотношение между единицами площади 190 Таблица 38. Соотношение между единицами объема 191 Таблица 39. Соотношение между единицами массы 191 Таблица 40. Соотношение между единицами плотности 192 Таблица 41. Соотношение между единицами удельного объема 192 Таблица 42. Соотношение между единицами времени 193 Таблица 43. Соотношение между единицами скорости 193 Таблица 44. Соотношение между единицами ускорения 193 Таблица 45. Соотношение между единицами угла 93 Таблица 46. Соотношение между единицами угловой скорости 94 Таблица 47. Соотношение между единицами силы 94 Таблица 48. Соотношение между единицами давления и напряжения 195 Т а б л и ц а 49. Соотношение между единицами энергии 195 Таблица 50. Соотношение между единицами мощности 196 Таблица 27. Перевод значений <a href="/info/12564">количества теплоты</a> из калорий (международных) в джоули 162 Т аблица 28. Перевод значений энергии из киловатт-часов в джоули 167 Таблица 29. Уравнения электромагнетизма и некоторые уравнепия <a href="/info/526650">атомной физики</a> в рационализованной форме для СИ и нерационализованной форме для системы СГС (симметричной) 172 Таблица 30. <a href="/info/324144">Переводные множители</a> для электрических и <a href="/info/440993">магнитных величин</a> 175 Таблица 31. Примеры применения единиц СИ для выражения электрических и <a href="/info/440993">магнитных величин</a> 177 Таблица 32. Абсолютная и <a href="/info/194436">относительная видности</a> при различных <a href="/info/12500">длинах волн</a> 181 Табл и ц а 33. Радиологические величины и единицы, рекомендуемые Международной комиссией по радиологическим единицам и измерениям 183 Таблица 34. <a href="/info/43069">Предельно допустимые</a> <a href="/info/356705">удельные активности</a> и концентрации <a href="/info/35709">радиоактивных изотопов</a> в соответствии с санитарными правилами 186 Таблица 35. <a href="/info/668377">Фундаментальные физические константы</a> 187 Таблица 36. <a href="/info/347894">Соотношение между единицами длины</a> 190 Таблица 37. Соотношение между <a href="/info/675801">единицами площади</a> 190 Таблица 38. Соотношение между единицами объема 191 Таблица 39. <a href="/info/83940">Соотношение между единицами массы</a> 191 Таблица 40. Соотношение между единицами плотности 192 Таблица 41. Соотношение между единицами удельного объема 192 Таблица 42. Соотношение между единицами времени 193 Таблица 43. Соотношение между <a href="/info/367217">единицами скорости</a> 193 Таблица 44. Соотношение между <a href="/info/367220">единицами ускорения</a> 193 Таблица 45. Соотношение между единицами угла 93 Таблица 46. <a href="/info/694014">Соотношение между единицами угловой</a> скорости 94 Таблица 47. Соотношение между <a href="/info/40256">единицами силы</a> 94 Таблица 48. <a href="/info/347895">Соотношение между единицами давления</a> и напряжения 195 Т а б л и ц а 49. Соотношение между <a href="/info/88286">единицами энергии</a> 195 Таблица 50. Соотношение между единицами мощности 196

До сих пор широко испол1.зуются в практике инженерных расчетов измерение давления (напоров) в технических атмосферах (ат), метрах водяного и миллиметрах ртутного столба (м вод. ст. и мм рт. ст.), из уерение температуры в градусах Цельсия (°С), динамической 1 язкости в пуазах (П) и кинематической в стоксах (Ст), раСоты и энергии в киловатт-часах (кВт-ч). Соотношения между наиболее употребительными единицами применяемых систем измерения приведены в тексте и приложении.  [c.12]

В качестве единиц для измерения давления получили наибольшее распространение 1) физическая атмосфера 2) техническая атмосфера 3) миллиметр ртутного столба 4) миллиметр и метр водяного столба 5) гектопьеза 6) бар. Соотношения между различными единицами давления приведены в табл. 9.  [c.475]

Эта формула может быть проверена путем опыта с очень большой точностью поэтому она сыграла весьма большую роль при установлении законов движения вязкой жидкости. Между прочим, она позволяет по измеренным значениям расхода Q и разности давлений pi — р2 очень точно определить коэффициент вязкости Согласно формуле (4) расход жидкости пропорционален падению давления на единице длины трубы и четвертой степени радиуса трубы. Это соотношение экспериментально было установлено Г. Гагеном в 1839 г., а затем вторично, независимо от Гагена, Пуазейлем . Обычно оно называется законом Пу-азейля, так как статья Гагена, который был инженером, по-видимому, осталась незамеченной среди физиков. Правильнее называть соотношение (4) законом Гагена-Пуазейля. Забегая вперед, отметим, что закон Гагена-Пуазейля соблюдается при малых скоростях только в узких  [c.144]

Для ламинарного течения связь между перепадом давления и количеством протекающей жидкости Q = (расход) определяется чисто теоретически, и при этом получается хорошее совпадение с опытом ). Для турбулентного течения такую связь можно установить только на основе измерений, так как чисто теоретический расчет турбулентных течений в настоящее время пока еще невозможен. Связь между перепадом давления и расходом устанавливается законом сопротивлениялля движения в трубе. В литературе известна большое число формул, определяющих сопротивление в трубе, причем более старые из них выведены без учета закона подобия Рейнольдса и зависят от выбора единиц. В настоящее время таким формулам придают безразмерный вид, для чего вводят безразмерный коэффициент сопротивления Я, определяемый соотношением  [c.537]


Смотреть страницы где упоминается термин Соотношения между единицами измерений давления : [c.189]    [c.246]    [c.93]    [c.304]    [c.203]    [c.742]   
Смотреть главы в:

Краткий справочник технолога-машиностроителя Изд.2  -> Соотношения между единицами измерений давления



ПОИСК



224 — Единицы измерени

376 — Соотношение между единицами

5 — Соотношения между

Давление 2 — 9 5 — 147 — Измерени

Давление 9 — Измерение

Давление — Единицы измерени

Давление — Единицы измерения

Единица давления

Единица измерения давления соотношения между единицами

Единицы измерения

Единицы измерения давления, соотношение

Измерение давления (см. «Единицы для измерения давления

Соотношение между единицами давления

Соотношения между единицами измерений



© 2025 Mash-xxl.info Реклама на сайте